Colorectal Cancer Segmentation using Atrous Convolution and Residual
Enhanced UNet
- URL: http://arxiv.org/abs/2103.09289v1
- Date: Tue, 16 Mar 2021 19:20:20 GMT
- Title: Colorectal Cancer Segmentation using Atrous Convolution and Residual
Enhanced UNet
- Authors: Nisarg A. Shah, Divij Gupta, Romil Lodaya, Ujjwal Baid, and Sanjay
Talbar
- Abstract summary: We propose a CNN-based approach, which uses atrous convolutions and residual connections besides the conventional filters.
The proposed AtResUNet was trained on the DigestPath 2019 Challenge dataset for colorectal cancer segmentation with results having a Dice Coefficient of 0.748.
- Score: 0.5353034688884528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Colorectal cancer is a leading cause of death worldwide. However, early
diagnosis dramatically increases the chances of survival, for which it is
crucial to identify the tumor in the body. Since its imaging uses
high-resolution techniques, annotating the tumor is time-consuming and requires
particular expertise. Lately, methods built upon Convolutional Neural
Networks(CNNs) have proven to be at par, if not better in many biomedical
segmentation tasks. For the task at hand, we propose another CNN-based
approach, which uses atrous convolutions and residual connections besides the
conventional filters. The training and inference were made using an efficient
patch-based approach, which significantly reduced unnecessary computations. The
proposed AtResUNet was trained on the DigestPath 2019 Challenge dataset for
colorectal cancer segmentation with results having a Dice Coefficient of 0.748.
Related papers
- BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
This research presents BetterNet, a convolutional neural network architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation.
BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer.
arXiv Detail & Related papers (2024-05-05T21:08:49Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
Brain tumor is one of the severe health complications which lead to decrease in life expectancy of the individuals.
Timely detection and prediction of brain tumors can be helpful to prevent death rates due to brain tumors.
Deep learning-based approaches have emerged as a promising solution to develop automated biomedical image exploration tools.
arXiv Detail & Related papers (2023-07-16T14:06:45Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
Lung cancer is one of the deadliest cancers, and its effective diagnosis and treatment depend on the accurate delineation of the tumor.
Human-centered segmentation, which is currently the most common approach, is subject to inter-observer variability.
The 2018 VIP Cup started with a global engagement from 42 countries to access the competition data.
In a nutshell, all the algorithms proposed during the competition, are based on deep learning models combined with a false positive reduction technique.
arXiv Detail & Related papers (2022-01-03T03:06:38Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
We propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method.
It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant.
Our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
arXiv Detail & Related papers (2021-01-01T11:52:29Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - SDCT-AuxNet$^{\theta}$: DCT Augmented Stain Deconvolutional CNN with
Auxiliary Classifier for Cancer Diagnosis [14.567067583556714]
Acute lymphoblastic leukemia (ALL) is a pervasive pediatric white blood cell cancer across the globe.
This paper presents a novel deep learning architecture for the classification of cell images of ALL cancer.
Elaborate experiments have been carried out on our recently released public dataset of 15114 images of ALL cancer and healthy cells.
arXiv Detail & Related papers (2020-05-30T16:01:31Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.