BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation
- URL: http://arxiv.org/abs/2405.04288v1
- Date: Sun, 5 May 2024 21:08:49 GMT
- Title: BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation
- Authors: Owen Singh, Sandeep Singh Sengar,
- Abstract summary: This research presents BetterNet, a convolutional neural network architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation.
BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer.
- Score: 0.6062751776009752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Colorectal cancer contributes significantly to cancer-related mortality. Timely identification and elimination of polyps through colonoscopy screening is crucial in order to decrease mortality rates. Accurately detecting polyps in colonoscopy images is difficult because of the differences in characteristics such as size, shape, texture, and similarity to surrounding tissues. Current deep-learning methods often face difficulties in capturing long-range connections necessary for segmentation. This research presents BetterNet, a convolutional neural network (CNN) architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation. The primary characteristics encompass (1) a residual decoder architecture that facilitates efficient gradient propagation and integration of multiscale features. (2) channel and spatial attention blocks within the decoder block to concentrate the learning process on the relevant areas of polyp regions. (3) Achieving state-of-the-art performance on polyp segmentation benchmarks while still ensuring computational efficiency. (4) Thorough ablation tests have been conducted to confirm the influence of architectural components. (5) The model code has been made available as open-source for further contribution. Extensive evaluations conducted on datasets such as Kvasir-SEG, CVC ClinicDB, Endoscene, EndoTect, and Kvasir-Sessile demonstrate that BetterNets outperforms current SOTA models in terms of segmentation accuracy by significant margins. The lightweight design enables real-time inference for various applications. BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer. Link to the code: https://github.com/itsOwen/BetterNet
Related papers
- GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
This paper presents a modified version of MultiResU-Net for histopathology image segmentation.
It is selected as the backbone for its ability to analyze and segment complex features at multiple scales.
We validate our approach on two diverse breast cancer histopathology image datasets.
arXiv Detail & Related papers (2024-06-12T19:17:17Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
This paper proposes an attention-based residual Double U-Net architecture (AttResDU-Net) that improves on the existing medical image segmentation networks.
We conducted experiments on three datasets: CVC Clinic-DB, ISIC 2018, and the 2018 Data Science Bowl datasets and achieved Dice Coefficient scores of 94.35%, 91.68%, and 92.45% respectively.
arXiv Detail & Related papers (2023-06-25T14:28:08Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - DilatedSegNet: A Deep Dilated Segmentation Network for Polyp
Segmentation [2.6179759969345002]
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide.
Powered by deep learning, computer-aided diagnosis (CAD) systems can detect regions in the colon overlooked by physicians during colonoscopy.
Lacking high accuracy and real-time speed are the essential obstacles to be overcome for successful clinical integration of such systems.
arXiv Detail & Related papers (2022-10-24T20:36:30Z) - Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution
Network [3.1374864575817214]
In this study, we introduce a novel deep learning architecture, named textbfMKDCNet, for automatic polyp segmentation.
Experiments on four publicly available polyp datasets and cell nuclei dataset show that the proposed MKDCNet outperforms the state-of-the-art methods.
MKDCNet can be a strong benchmark for building real-time systems for clinical colonoscopies.
arXiv Detail & Related papers (2022-06-13T15:47:38Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.