Efficient Bayesian Optimization using Multiscale Graph Correlation
- URL: http://arxiv.org/abs/2103.09434v1
- Date: Wed, 17 Mar 2021 04:35:09 GMT
- Title: Efficient Bayesian Optimization using Multiscale Graph Correlation
- Authors: Takuya Kanazawa
- Abstract summary: We propose a new approach to Bayesian optimization called GP-MGC.
We present our evaluation of GP-MGC in applications involving both synthetic benchmark functions and real-world datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization is a powerful tool to optimize a black-box function,
the evaluation of which is time-consuming or costly. In this paper, we propose
a new approach to Bayesian optimization called GP-MGC, which maximizes
multiscale graph correlation with respect to the global maximum to determine
the next query point. We present our evaluation of GP-MGC in applications
involving both synthetic benchmark functions and real-world datasets and
demonstrate that GP-MGC performs as well as or even better than
state-of-the-art methods such as max-value entropy search and GP-UCB.
Related papers
- Gaussian Process Thompson Sampling via Rootfinding [2.94944680995069]
Thompson sampling (TS) is a simple, effective policy in Bayesian decision making.
In continuous optimization, the posterior of the objective function is often a Gaussian process (GP), whose sample paths have numerous local optima.
We introduce an efficient global optimization strategy for GP-TS that carefully selects starting points for gradient-based multi-starts.
arXiv Detail & Related papers (2024-10-10T16:06:45Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function.
We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.
arXiv Detail & Related papers (2022-09-02T09:06:24Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
Processes [0.0]
We adapt the Vecchia approximation, a popular GP approximation from spatial statistics, to enable scalable high-dimensional Bayesian optimization.
We focus on the use of our warped Vecchia GP in trust-region Bayesian optimization via Thompson sampling.
arXiv Detail & Related papers (2022-03-02T23:55:14Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Using Distance Correlation for Efficient Bayesian Optimization [0.0]
We propose a novel approach for Bayesian optimization, called $textsfGP-DC$.
It balances exploration and exploitation automatically, and requires no manual parameter tuning.
We evaluate $textsfGP-DC$ on a number of benchmark functions and observe that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T19:37:35Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Mixed Strategies for Robust Optimization of Unknown Objectives [93.8672371143881]
We consider robust optimization problems, where the goal is to optimize an unknown objective function against the worst-case realization of an uncertain parameter.
We design a novel sample-efficient algorithm GP-MRO, which sequentially learns about the unknown objective from noisy point evaluations.
GP-MRO seeks to discover a robust and randomized mixed strategy, that maximizes the worst-case expected objective value.
arXiv Detail & Related papers (2020-02-28T09:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.