Towards Few-Shot Fact-Checking via Perplexity
- URL: http://arxiv.org/abs/2103.09535v1
- Date: Wed, 17 Mar 2021 09:43:19 GMT
- Title: Towards Few-Shot Fact-Checking via Perplexity
- Authors: Nayeon Lee, Yejin Bang, Andrea Madotto, Madian Khabsa, Pascale Fung
- Abstract summary: We propose a new way of utilizing the powerful transfer learning ability of a language model via a perplexity score.
Our methodology can already outperform the Major Class baseline by more than absolute 10% on the F1-Macro metric.
We construct and publicly release two new fact-checking datasets related to COVID-19.
- Score: 40.11397284006867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot learning has drawn researchers' attention to overcome the problem of
data scarcity. Recently, large pre-trained language models have shown great
performance in few-shot learning for various downstream tasks, such as question
answering and machine translation. Nevertheless, little exploration has been
made to achieve few-shot learning for the fact-checking task. However,
fact-checking is an important problem, especially when the amount of
information online is growing exponentially every day. In this paper, we
propose a new way of utilizing the powerful transfer learning ability of a
language model via a perplexity score. The most notable strength of our
methodology lies in its capability in few-shot learning. With only two training
samples, our methodology can already outperform the Major Class baseline by
more than absolute 10% on the F1-Macro metric across multiple datasets. Through
experiments, we empirically verify the plausibility of the rather surprising
usage of the perplexity score in the context of fact-checking and highlight the
strength of our few-shot methodology by comparing it to strong
fine-tuning-based baseline models. Moreover, we construct and publicly release
two new fact-checking datasets related to COVID-19.
Related papers
- Conditional Prototype Rectification Prompt Learning [32.533844163120875]
We propose a Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way.
CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks.
arXiv Detail & Related papers (2024-04-15T15:43:52Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases [17.431381376675432]
In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data.
With Bloomz-7B1-mt as the base model, the results show that merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation.
We propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks.
arXiv Detail & Related papers (2023-03-26T14:49:37Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Sample Efficient Approaches for Idiomaticity Detection [6.481818246474555]
This work explores sample efficient methods of idiomaticity detection.
In particular, we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings.
Our experiments show that whilePET improves performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT.
arXiv Detail & Related papers (2022-05-23T13:46:35Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.