Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases
- URL: http://arxiv.org/abs/2303.14742v1
- Date: Sun, 26 Mar 2023 14:49:37 GMT
- Title: Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases
- Authors: Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang,
Baochang Ma, Xiangang Li
- Abstract summary: In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data.
With Bloomz-7B1-mt as the base model, the results show that merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation.
We propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks.
- Score: 17.431381376675432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of ChatGPT has recently attracted numerous efforts to replicate
it, with instruction-tuning strategies being a key factor in achieving
remarkable results. Instruction-tuning not only significantly enhances the
model's performance and generalization but also makes the model's generated
results more consistent with human speech patterns. However current research
rarely studies the impact of different amounts of instruction data on model
performance, especially in the real-world use cases. In this paper we explore
the performance of large language models based on instruction tuning across
different scales of instruction data. An evaluation dataset consisting of 12
major online use cases is constructed in the experiment. With Bloomz-7B1-mt as
the base model, the results show that 1) merely increasing the amount of
instruction data leads to continuous improvement in tasks such as open-ended
generation, 2) in tasks such as math and code, the model performance curve
remains quite flat while increasing data size. We further analyze the possible
causes of these phenomena and propose potential future research directions such
as effectively selecting high-quality training data, scaling base models and
training methods specialized for hard tasks. We will release our training and
evaluation datasets, as well as model checkpoints.
Related papers
- A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
This paper demonstrates that model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering.
We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset.
After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces.
arXiv Detail & Related papers (2024-07-02T09:54:39Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Dynamics of Instruction Tuning: Each Ability of Large Language Models
Has Its Own Growth Pace [21.015261553612643]
We present a dataset with over 40k instances across ten abilities and examine instruction-tuned models with 7b to 33b parameters.
Our study reveals three primary findings: (i) Despite the models' overall performance being tied to data and parameter scale, individual abilities have different sensitivities to these factors.
Human-curated data strongly outperforms synthetic data from GPT-4 in efficiency and can constantly enhance model performance with volume increases.
arXiv Detail & Related papers (2023-10-30T15:37:10Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
We focus on investigating the benefits of data augmentation by analyzing pre-existing image datasets.
Our results show that the performance and robustness of existing state of the art (or SOTA) models can be increased dramatically.
arXiv Detail & Related papers (2022-08-06T03:39:37Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
We develop a model-specific data subsampling strategy that improves over random sampling whenever training points have varying influence.
Specifically, we leverage influence functions to guide our selection strategy, proving theoretically, and demonstrating empirically that our approach quickly selects high-quality models.
arXiv Detail & Related papers (2020-10-20T12:10:28Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.