論文の概要: Quinductor: a multilingual data-driven method for generating
reading-comprehension questions using Universal Dependencies
- arxiv url: http://arxiv.org/abs/2103.10121v1
- Date: Thu, 18 Mar 2021 09:49:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 14:04:53.235384
- Title: Quinductor: a multilingual data-driven method for generating
reading-comprehension questions using Universal Dependencies
- Title(参考訳): Quinductor:Universal Dependenciesを用いた読解理解質問生成のための多言語データ駆動手法
- Authors: Dmytro Kalpakchi and Johan Boye
- Abstract要約: 係り受け木を用いた読解質問を生成するための多言語データ駆動手法を提案する。
本手法は,低リソース言語に対して,強く,ほとんど決定論的かつ安価なベースラインを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a multilingual data-driven method for generating reading
comprehension questions using dependency trees. Our method provides a strong,
mostly deterministic, and inexpensive-to-train baseline for less-resourced
languages. While a language-specific corpus is still required, its size is
nowhere near those required by modern neural question generation (QG)
architectures. Our method surpasses QG baselines previously reported in the
literature and shows a good performance in terms of human evaluation.
- Abstract(参考訳): 係り受け木を用いた読解質問を生成する多言語データ駆動手法を提案する。
本手法は,低リソース言語に対して,強く,ほとんど決定論的かつ安価なベースラインを提供する。
言語固有のコーパスは依然として必要だが、そのサイズは現代のニューラルネットワーク生成(QG)アーキテクチャで必要とされるものに近い。
本手法は文献で報告したQGベースラインを超え,人的評価の点で優れた性能を示す。
関連論文リスト
- Cross-lingual Transfer Learning for Javanese Dependency Parsing [0.20537467311538835]
本研究は,ジャワ語における係り受け解析の強化における伝達学習の有効性を評価することに焦点を当てた。
Javaneseを含む100以上の言語からの依存性ツリーバンクからなるUniversal Dependenciesデータセットを利用する。
論文 参考訳(メタデータ) (2024-01-22T16:13:45Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Cross-Lingual Question Answering over Knowledge Base as Reading
Comprehension [61.079852289005025]
知識ベース(xKBQA)に対する言語間質問応答は、提供された知識ベースとは異なる言語での質問に答えることを目的としている。
xKBQAが直面する大きな課題の1つは、データアノテーションのコストが高いことである。
読解パラダイムにおけるxKBQAの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-26T05:52:52Z) - Cross-Lingual GenQA: A Language-Agnostic Generative Question Answering
Approach for Open-Domain Question Answering [76.99585451345702]
オープン検索生成質問回答(GenQA)は、高品質で自然な回答を英語で提供することが証明されている。
我々は多言語環境に対するGenQAアプローチの最初の一般化について述べる。
論文 参考訳(メタデータ) (2021-10-14T04:36:29Z) - One Question Answering Model for Many Languages with Cross-lingual Dense
Passage Retrieval [39.061900747689094]
CORAはクロスランガルなオープン・レトリーバル・アンサー・ジェネレーション・モデルである。
言語固有の注釈付きデータや知識ソースが利用できない場合でも、多くの言語で質問に答えることができる。
論文 参考訳(メタデータ) (2021-07-26T06:02:54Z) - Improving Cross-Lingual Reading Comprehension with Self-Training [62.73937175625953]
現在の最新モデルは、いくつかのベンチマークで人間のパフォーマンスを上回っています。
前作では、ゼロショットのクロスリンガル読解のための事前訓練された多言語モデルの能力を明らかにしている。
本稿では,ラベルのないデータを利用して性能を向上する。
論文 参考訳(メタデータ) (2021-05-08T08:04:30Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
本稿では,特に訓練データ量に制限のある言語に対して,依存関係解析の2つのアプローチを提案する。
第1のアプローチは、最先端のディープラーニングとルールベースのアプローチを組み合わせ、第2のアプローチは、形態情報をネットワークに組み込む。
提案手法はトルコ語向けに開発されたが、他の言語にも適用可能である。
論文 参考訳(メタデータ) (2020-02-24T08:34:33Z) - How Much Knowledge Can You Pack Into the Parameters of a Language Model? [44.81324633069311]
構造化されていないテキストでトレーニングされたニューラルネットワークモデルは、自然言語クエリを使用して暗黙的に知識を格納し、取得することができる。
我々は、事前学習したモデルを微調整して、外部の文脈や知識にアクセスせずに質問に答えることにより、このアプローチの実用性を測定する。
論文 参考訳(メタデータ) (2020-02-10T18:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。