A Location-Sensitive Local Prototype Network for Few-Shot Medical Image
Segmentation
- URL: http://arxiv.org/abs/2103.10178v1
- Date: Thu, 18 Mar 2021 11:27:19 GMT
- Title: A Location-Sensitive Local Prototype Network for Few-Shot Medical Image
Segmentation
- Authors: Qinji Yu, Kang Dang, Nima Tajbakhsh, Demetri Terzopoulos, Xiaowei Ding
- Abstract summary: We propose a prototype-based method that leverages spatial priors to perform few-shot medical image segmentation.
For organ segmentation experiments on the VISCERAL CT image dataset, our method outperforms the state-of-the-art approaches by 10% in the mean Dice coefficient.
- Score: 11.95230738435115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the tremendous success of deep neural networks in medical image
segmentation, they typically require a large amount of costly, expert-level
annotated data. Few-shot segmentation approaches address this issue by learning
to transfer knowledge from limited quantities of labeled examples.
Incorporating appropriate prior knowledge is critical in designing
high-performance few-shot segmentation algorithms. Since strong spatial priors
exist in many medical imaging modalities, we propose a prototype-based method
-- namely, the location-sensitive local prototype network -- that leverages
spatial priors to perform few-shot medical image segmentation. Our approach
divides the difficult problem of segmenting the entire image with global
prototypes into easily solvable subproblems of local region segmentation with
local prototypes. For organ segmentation experiments on the VISCERAL CT image
dataset, our method outperforms the state-of-the-art approaches by 10% in the
mean Dice coefficient. Extensive ablation studies demonstrate the substantial
benefits of incorporating spatial information and confirm the effectiveness of
our approach.
Related papers
- Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - Few-shot image segmentation for cross-institution male pelvic organs
using registration-assisted prototypical learning [13.567073992605797]
This work presents the first 3D few-shot interclass segmentation network for medical images.
It uses a labelled multi-institution dataset from prostate cancer patients with eight regions of interest.
A built-in registration mechanism can effectively utilise the prior knowledge of consistent anatomy between subjects.
arXiv Detail & Related papers (2022-01-17T11:44:10Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
We introduce a novel deep neural network architecture that exploits the inherent spatial coherence of anatomical structures.
Our approach is well equipped to capture long-range spatial dependencies in the segmented pixel/voxel space.
Our method performs favourably to commonly used U-Net and U-Net++ architectures.
arXiv Detail & Related papers (2021-03-22T10:37:20Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.