Systematic Mapping Study on the Machine Learning Lifecycle
- URL: http://arxiv.org/abs/2103.10248v1
- Date: Thu, 11 Mar 2021 11:44:23 GMT
- Title: Systematic Mapping Study on the Machine Learning Lifecycle
- Authors: Yuanhao Xie, Lu\'is Cruz, Petra Heck, Jan S. Rellermeyer
- Abstract summary: The study yields 405 publications published from 2005 to 2020, mapped in 5 different main research topics, and 31 sub-topics.
We observe that only a minority of publications focus on data management and model production problems, and that more studies should address the AI lifecycle from a holistic perspective.
- Score: 4.4090257489826845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of artificial intelligence (AI) has made various industries
eager to explore the benefits of AI. There is an increasing amount of research
surrounding AI, most of which is centred on the development of new AI
algorithms and techniques. However, the advent of AI is bringing an increasing
set of practical problems related to AI model lifecycle management that need to
be investigated. We address this gap by conducting a systematic mapping study
on the lifecycle of AI model. Through quantitative research, we provide an
overview of the field, identify research opportunities, and provide suggestions
for future research. Our study yields 405 publications published from 2005 to
2020, mapped in 5 different main research topics, and 31 sub-topics. We observe
that only a minority of publications focus on data management and model
production problems, and that more studies should address the AI lifecycle from
a holistic perspective.
Related papers
- How Mature is Requirements Engineering for AI-based Systems? A Systematic Mapping Study on Practices, Challenges, and Future Research Directions [5.6818729232602205]
It is unclear if existing RE methods are sufficient or if new ones are needed to address these challenges.
Existing RE4AI research focuses mainly on requirements analysis and elicitation, with most practices applied in these areas.
We identified requirements specification, explainability, and the gap between machine learning engineers and end-users as the most prevalent challenges.
arXiv Detail & Related papers (2024-09-11T11:28:16Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
This study examines the impact of Generative Artificial Intelligence (GenAI) on academic research, focusing on its application to qualitative and quantitative data analysis.
GenAI tools evolve rapidly, they offer new possibilities for enhancing research productivity and democratising complex analytical processes.
Their integration into academic practice raises significant questions regarding research integrity and security, authorship, and the changing nature of scholarly work.
arXiv Detail & Related papers (2024-08-13T13:10:03Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Unmasking Biases and Navigating Pitfalls in the Ophthalmic Artificial
Intelligence Lifecycle: A Review [3.1929071422400446]
This review article breaks down the AI lifecycle into seven steps.
Data collection; defining the model task; data pre-processing and labeling; model development; model evaluation and validation; deployment.
Finally, post-deployment evaluation, monitoring, and system recalibration and delves into the risks for harm at each step and strategies for mitigating them.
arXiv Detail & Related papers (2023-10-08T03:49:42Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
Human-Centered AI (HCAI) refers to the research effort that aims to design and implement AI techniques to support various human tasks.
We illustrate how we approach HCAI using a series of research projects around Data Science (DS) works as a case study.
arXiv Detail & Related papers (2021-10-03T21:47:13Z) - A narrowing of AI research? [0.0]
We study the evolution of the thematic diversity of AI research in academia and the private sector.
We measure the influence of private companies in AI research through the citations they receive and their collaborations with other institutions.
arXiv Detail & Related papers (2020-09-22T08:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.