Characterising Research Areas in the field of AI
- URL: http://arxiv.org/abs/2205.13471v1
- Date: Thu, 26 May 2022 16:30:30 GMT
- Title: Characterising Research Areas in the field of AI
- Authors: Alessandra Belfiore, Angelo Salatino, Francesco Osborne
- Abstract summary: We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interest in Artificial Intelligence (AI) continues to grow rapidly, hence it
is crucial to support researchers and organisations in understanding where AI
research is heading. In this study, we conducted a bibliometric analysis on
257K articles in AI, retrieved from OpenAlex. We identified the main conceptual
themes by performing clustering analysis on the co-occurrence network of
topics. Finally, we observed how such themes evolved over time. The results
highlight the growing academic interest in research themes like deep learning,
machine learning, and internet of things.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - AI Governance in the Context of the EU AI Act: A Bibliometric and Literature Review Approach [0.0]
This study analyzed the research trends in AI governance within the framework of the EU AI Act.
Our findings reveal that research on AI governance, particularly concerning AI systems regulated by the EU AI Act, remains relatively limited compared to the broader AI research landscape.
arXiv Detail & Related papers (2025-01-08T11:01:11Z) - Future of Information Retrieval Research in the Age of Generative AI [61.56371468069577]
In the fast-evolving field of information retrieval (IR), the integration of generative AI technologies such as large language models (LLMs) is transforming how users search for and interact with information.
Recognizing this paradigm shift, a visioning workshop was held in July 2024 to discuss the future of IR in the age of generative AI.
This report contains a summary of discussions as potentially important research topics and contains a list of recommendations for academics, industry practitioners, institutions, evaluation campaigns, and funding agencies.
arXiv Detail & Related papers (2024-12-03T00:01:48Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AI alignment research is dedicated to ensuring that artificial intelligence (AI) benefits humans.
In this project, we collected and analyzed existing AI alignment research.
We found that the field is growing quickly, with several subfields emerging in parallel.
arXiv Detail & Related papers (2022-06-06T18:24:17Z) - On the Evolution of A.I. and Machine Learning: Towards a Meta-level
Measuring and Understanding Impact, Influence, and Leadership at Premier A.I.
Conferences [0.26999000177990923]
We present measures allowing the analyses of AI and machine learning researchers' impact, influence, and leadership over the last decades.
We look at papers published at the flagship AI and machine learning conferences since the first International Joint Conference on Artificial Intelligence (IJCAI) held in 1969.
arXiv Detail & Related papers (2022-05-26T03:41:12Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
The study yields 405 publications published from 2005 to 2020, mapped in 5 different main research topics, and 31 sub-topics.
We observe that only a minority of publications focus on data management and model production problems, and that more studies should address the AI lifecycle from a holistic perspective.
arXiv Detail & Related papers (2021-03-11T11:44:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.