Quantum-enhanced radiometry via approximate quantum error correction
- URL: http://arxiv.org/abs/2103.10281v2
- Date: Fri, 19 Mar 2021 03:04:44 GMT
- Title: Quantum-enhanced radiometry via approximate quantum error correction
- Authors: W. Wang, Z.-J. Chen, X. Liu, W. Cai, Y. Ma, X. Mu, L. Hu, Y. Xu, H.
Wang, Y. P. Song, X.-B. Zou, C.-L. Zou and L. Sun
- Abstract summary: We report an experimental demonstration of a quantum enhancement in sensing with a bosonic probe with different encodings.
In a practical radiometry scenario, we attain a 5.3 dB enhancement of sensitivity, which reaches $9.1times10-4,mathrmHz-1/2$ when measuring the excitation population of a receiver mode.
- Score: 0.22932165857761397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By exploiting the exotic quantum states of a probe, it is possible to realize
efficient sensors that are attractive for practical metrology applications and
fundamental studies. Similar to other quantum technologies, quantum sensing is
suffering from noises and thus the experimental developments are hindered.
Although theoretical schemes based on quantum error correction (QEC) have been
proposed to combat noises, their demonstrations are prevented by the stringent
experimental requirements, such as perfect quantum operations and the
orthogonal condition between the sensing interaction Hamiltonian and the noise
Lindbladians. Here, we report an experimental demonstration of a quantum
enhancement in sensing with a bosonic probe with different encodings, by
exploring the large Hilbert space of the bosonic mode and developing both the
approximate QEC and the quantum jump tracking approaches. In a practical
radiometry scenario, we attain a 5.3 dB enhancement of sensitivity, which
reaches $9.1\times10^{-4}\,\mathrm{Hz}^{-1/2}$ when measuring the excitation
population of a receiver mode. Our results demonstrate the potential of quantum
sensing with near-term quantum technologies, not only shedding new light on the
quantum advantage of sensing by revealing its difference from other quantum
applications, but also stimulating further efforts on bosonic quantum
technologies.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Variational Quantum Metrology with Loschmidt Echo [20.002455345052702]
We propose a scalable scheme with a symmetrical variational quantum circuit which, same as the Loschmidt echo, consists of a forward and a backward evolution.
We show that in this scheme the quantum Fisher information, which quantifies the precision limit, can be efficiently obtained from a measurement signal of the Loschmidt echo.
We experimentally implement the scheme on an ensemble of 10-spin quantum processor and successfully achieves a precision near the theoretical limit which outperforms the standard quantum limit with 12.4 dB.
arXiv Detail & Related papers (2022-11-22T14:21:59Z) - Modeling Quantum Enhanced Sensing on a Quantum Computer [0.0]
Quantum computers allow for direct simulation of the quantum interference and entanglement used in modern interferometry experiments.
We present two quantum circuit models that demonstrate the role of quantum mechanics and entanglement in modern precision sensors.
arXiv Detail & Related papers (2022-09-16T22:29:16Z) - Towards Quantum Simulations in Particle Physics and Beyond on Noisy
Intermediate-Scale Quantum Devices [1.7242431149740054]
We review two algorithmic advances that bring us closer to reliable quantum simulations of model systems in high energy physics.
The first method is the dimensional expressivity analysis of quantum circuits, which allows for constructing minimal but maximally expressive quantum circuits.
The second method is an efficient mitigation of readout errors on quantum devices.
arXiv Detail & Related papers (2021-10-07T22:13:37Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Demonstration of quantum delayed-choice experiment on a quantum computer [1.4247965743943851]
We show that coexistence of wave and particle nature emerges as a consequence of the uncertainty in the quantum controlled experimental setup.
We also show that an entanglement-assisted scheme of the same reproduces the predictions of quantum mechanics.
arXiv Detail & Related papers (2020-04-09T16:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.