Experimental Implementation of a Qubit-Efficient Variational Quantum Eigensolver with Analog Error Mitigation on a Superconducting Quantum Processor
- URL: http://arxiv.org/abs/2504.06554v1
- Date: Wed, 09 Apr 2025 03:23:26 GMT
- Title: Experimental Implementation of a Qubit-Efficient Variational Quantum Eigensolver with Analog Error Mitigation on a Superconducting Quantum Processor
- Authors: Yuwei Ma, Weiting Wang, Xianghao Mu, Weizhou Cai, Ziyue Hua, Xiaoxuan Pan, Dong-Ling Deng, Rebing Wu, Chang-Ling Zou, Lei Wang, Luyan Sun,
- Abstract summary: We experimentally demonstrate a qubit-efficient variational quantum eigensolver (VQE) algorithm using a superconducting quantum processor.<n>By leveraging matrix product states to compress the quantum state representation, we simulate an N + 1-spin circular Ising model with a transverse field.<n>As a validation, we apply our error-mitigated qubit-efficient VQE in determining the ground state energies of a 4-spin Ising model.
- Score: 1.4595435665847827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We experimentally demonstrate a qubit-efficient variational quantum eigensolver (VQE) algorithm using a superconducting quantum processor, employing minimal quantum resources with only a transmon qubit coupled to a high-coherence photonic qubit. By leveraging matrix product states to compress the quantum state representation, we simulate an N + 1-spin circular Ising model with a transverse field. Furthermore, we develop an analog error mitigation approach through zero-noise extrapolation by introducing a precise noise injection technique for the transmon qubit. As a validation, we apply our error-mitigated qubit-efficient VQE in determining the ground state energies of a 4-spin Ising model. Our results demonstrate the feasibility of performing quantum algorithms with minimal quantum resources while effectively mitigating the impact of noise, offering a promising pathway to bridge the gap between theoretical advances and practical implementations on current noisy intermediate-scale quantum devices.
Related papers
- Digitized counterdiabatic quantum critical dynamics [32.73124984242397]
We experimentally demonstrate that a digitized counterdiabatic quantum protocol reduces the number of topological defects created during a fast quench.<n>We utilize superconducting cloud-based quantum processors with up to 156 qubits.
arXiv Detail & Related papers (2025-02-20T23:43:04Z) - Realization of Constant-Depth Fan-Out with Real-Time Feedforward on a Superconducting Quantum Processor [33.096693427147535]
We demonstrate a quantum fan-out gate with real-time feedforward on up to four output qubits using a superconducting quantum processor.
Our work highlights the potential of mid-circuit measurements combined with real-time conditional operations to improve the efficiency of complex quantum algorithms.
arXiv Detail & Related papers (2024-09-11T03:40:24Z) - Full Band Structure Calculation of Semiconducting Materials on a Noisy Quantum Processor [2.6327434138210095]
We propose the Reduced Quantum Equation-of-Motion method to find the entire energy spectrum of a quantum system.
We analyse the performance of our method on two noise models and calculate the excitation energies of a bulk Silicon and Gallium Arsenide using our method on an IBM quantum processor.
arXiv Detail & Related papers (2024-05-15T06:35:39Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.<n>We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.<n>We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Analyzing the Performance of Variational Quantum Factoring on a
Superconducting Quantum Processor [0.0]
We study a QAOA-based quantum optimization algorithm by implementing the Variational Quantum Factoring (VQF) algorithm.
We demonstrate the impact of different noise sources on the performance of QAOA and reveal the coherent error caused by the residual ZZ-coupling between qubits.
arXiv Detail & Related papers (2020-12-14T18:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.