論文の概要: Large Scale Image Completion via Co-Modulated Generative Adversarial
Networks
- arxiv url: http://arxiv.org/abs/2103.10428v1
- Date: Thu, 18 Mar 2021 17:59:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 14:05:40.085043
- Title: Large Scale Image Completion via Co-Modulated Generative Adversarial
Networks
- Title(参考訳): Co-Modulated Generative Adversarial Networkによる大規模画像補完
- Authors: Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I
Chang, Yan Xu
- Abstract要約: 画像条件と最近の非条件生成アーキテクチャのギャップを埋める汎用的な新しいアプローチを提案する。
また,画像補完のための定量的指標が不十分なため,Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS)を提案する。
実験は、自由形式の画像補完における最先端の手法よりも品質と多様性の両面で優れた性能を示し、画像から画像への変換を容易に一般化する。
- 参考スコア(独自算出の注目度): 18.312552957727828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous task-specific variants of conditional generative adversarial
networks have been developed for image completion. Yet, a serious limitation
remains that all existing algorithms tend to fail when handling large-scale
missing regions. To overcome this challenge, we propose a generic new approach
that bridges the gap between image-conditional and recent modulated
unconditional generative architectures via co-modulation of both conditional
and stochastic style representations. Also, due to the lack of good
quantitative metrics for image completion, we propose the new Paired/Unpaired
Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the
perceptual fidelity of inpainted images compared to real images via linear
separability in a feature space. Experiments demonstrate superior performance
in terms of both quality and diversity over state-of-the-art methods in
free-form image completion and easy generalization to image-to-image
translation. Code is available at https://github.com/zsyzzsoft/co-mod-gan.
- Abstract(参考訳): 条件付き生成逆数ネットワークの多数のタスク固有変種が画像補完のために開発されている。
しかし、大規模な欠落領域を扱う場合、既存のアルゴリズムはすべて失敗する傾向があるという深刻な制限は残る。
この課題を克服するために,条件表現と確率表現の両方の共変調により,画像条件と最近の変調された非条件生成アーキテクチャのギャップを埋める,汎用的な新しいアプローチを提案する。
また, 画像補完のための定量的指標が不十分なため, 特徴空間における線形分離性による実画像と比較して, 画像の知覚忠実度を強く測定するPaired/Unpaired Inception Discriminative Score (P-IDS/U-IDS) を提案する。
実験は、自由形式の画像補完における最先端の手法よりも品質と多様性の両面で優れた性能を示し、画像から画像への変換を容易に一般化する。
コードはhttps://github.com/zsyzzsoft/co-mod-ganで入手できる。
関連論文リスト
- Modification Takes Courage: Seamless Image Stitching via Reference-Driven Inpainting [0.17975553762582286]
現在の画像縫合法は、不均一な色相や大きな視差のような挑戦的なシナリオにおいて顕著な縫い目を生み出す。
本稿では, 画像の融合と整形を基準ベースインペイントモデルとして再構成する参照駆動型インペイント・スティッチャ (RDIStitcher) を提案する。
本稿では,Multimodal Large Language Models (MLLM) を用いた画像品質評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-15T16:05:01Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
本稿では, 複雑な画像劣化を基本劣化の観点で表現できる, という新しい概念を提案する。
We propose the Unified-Width Adaptive Dynamic Network (U-WADN) which consist of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)。
提案したU-WADNは、最大32.3%のFLOPを同時に削減し、約15.7%のリアルタイム加速を実現している。
論文 参考訳(メタデータ) (2024-01-24T04:25:12Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Coarse-to-Fine: Learning Compact Discriminative Representation for
Single-Stage Image Retrieval [11.696941841000985]
検索と参照のパラダイムに従う2段階の手法は優れた性能を達成しているが、それぞれのローカルモジュールとグローバルモジュールは現実世界のアプリケーションでは非効率である。
本稿では,重要な局所記述子を注意深く選択し,大域的な表現に微粒な意味関係を注入する機構を提案する。
提案手法は,Revisited OxfordやRevisited Parisなどのベンチマークを用いて,最先端の単一ステージ画像検索性能を実現する。
論文 参考訳(メタデータ) (2023-08-08T03:06:10Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - High-Quality Pluralistic Image Completion via Code Shared VQGAN [51.7805154545948]
高速な推論速度で高品質と多様性を両立させることができる多元画像補完のための新しい枠組みを提案する。
我々のフレームワークは、セマンティックにリッチな離散的なコードを効率的かつ堅牢に学習することができ、画像再構成の品質が大幅に向上する。
論文 参考訳(メタデータ) (2022-04-05T01:47:35Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
複雑な画像に大きな穴をあける際の可視像構造を生成するためのカスケード変調GAN(CM-GAN)を提案する。
各デコーダブロックにおいて、まず大域変調を適用し、粗い意味認識合成構造を行い、次に大域変調の出力に空間変調を適用し、空間適応的に特徴写像を更に調整する。
さらに,ネットワークがホール内の新たな物体を幻覚させるのを防ぐため,実世界のシナリオにおける物体除去タスクのニーズを満たすために,オブジェクト認識型トレーニングスキームを設計する。
論文 参考訳(メタデータ) (2022-03-22T16:13:27Z) - Cascading Modular Network (CAM-Net) for Multimodal Image Synthesis [7.726465518306907]
永続的な課題は、同じ入力画像から出力画像の多様なバージョンを生成することである。
我々は,幅広いタスクに適用可能な統一アーキテクチャであるCAM-Netを提案する。
FID(Frechet Inception Distance)は、ベースラインに比べて最大45.3%低減できる。
論文 参考訳(メタデータ) (2021-06-16T17:58:13Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。