Concentric Spherical GNN for 3D Representation Learning
- URL: http://arxiv.org/abs/2103.10484v1
- Date: Thu, 18 Mar 2021 19:05:04 GMT
- Title: Concentric Spherical GNN for 3D Representation Learning
- Authors: James Fox, Bo Zhao, Sivasankaran Rajamanickam, Rampi Ramprasad, Le
Song
- Abstract summary: We propose a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps.
Our hierarchical architecture is based on alternatively learning to incorporate both intra-sphere and inter-sphere information.
We demonstrate the effectiveness of our approach in improving state-of-the-art performance on 3D classification tasks with rotated data.
- Score: 53.45704095146161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning 3D representations that generalize well to arbitrarily oriented
inputs is a challenge of practical importance in applications varying from
computer vision to physics and chemistry. We propose a novel multi-resolution
convolutional architecture for learning over concentric spherical feature maps,
of which the single sphere representation is a special case. Our hierarchical
architecture is based on alternatively learning to incorporate both
intra-sphere and inter-sphere information. We show the applicability of our
method for two different types of 3D inputs, mesh objects, which can be
regularly sampled, and point clouds, which are irregularly distributed. We also
propose an efficient mapping of point clouds to concentric spherical images,
thereby bridging spherical convolutions on grids with general point clouds. We
demonstrate the effectiveness of our approach in improving state-of-the-art
performance on 3D classification tasks with rotated data.
Related papers
- Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - Object Dynamics Modeling with Hierarchical Point Cloud-based Representations [1.3934784414106087]
We propose a novel U-net architecture based on continuous point convolution which embeds information from 3D coordinates.
Bottleneck layers in the downsampled point clouds lead to better long-range interaction modeling.
Our approach significantly improves the state-of-the-art, especially in scenarios that require accurate gravity or collision reasoning.
arXiv Detail & Related papers (2024-04-09T06:10:15Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
We propose a synthetic target representation composed of dense and complete point clouds depicting the target shape precisely by shape completion for robust 3D tracking.
Specifically, we design a voxelized 3D tracking framework with shape completion, in which we propose a quality-aware shape completion mechanism to alleviate the adverse effect of noisy historical predictions.
arXiv Detail & Related papers (2023-12-17T04:50:24Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
We introduce a self-supervised multimodal learning strategy that combines mesh-based functional map regularisation with a contrastive loss that couples mesh and point cloud data.
Our shape matching approach allows to obtain intramodal correspondences for triangle meshes, complete point clouds, and partially observed point clouds.
We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets.
arXiv Detail & Related papers (2023-03-20T09:47:02Z) - Interpolated SelectionConv for Spherical Images and Surfaces [0.0]
We present a new and general framework for convolutional neural network operations on spherical images.
Our approach represents the surface as a graph of connected points that doesn't rely on a particular sampling strategy.
arXiv Detail & Related papers (2022-10-18T19:49:07Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
We introduce a-temporal representation learning framework, capable of learning from unlabeled tasks.
Inspired by how infants learn from visual data in the wild, we explore rich cues derived from the 3D data.
STRL takes two temporally-related frames from a 3D point cloud sequence as the input, transforms it with the spatial data augmentation, and learns the invariant representation self-supervisedly.
arXiv Detail & Related papers (2021-09-01T04:17:11Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.