Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction
- URL: http://arxiv.org/abs/2407.01330v1
- Date: Mon, 1 Jul 2024 14:39:03 GMT
- Title: Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction
- Authors: Jiangbei Hu, Yanggeng Li, Fei Hou, Junhui Hou, Zhebin Zhang, Shengfa Wang, Na Lei, Ying He,
- Abstract summary: This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
- Score: 42.840655419509346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsigned distance fields (UDFs) provide a versatile framework for representing a diverse array of 3D shapes, encompassing both watertight and non-watertight geometries. Traditional UDF learning methods typically require extensive training on large datasets of 3D shapes, which is costly and often necessitates hyperparameter adjustments for new datasets. This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs. We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches characterized by mathematical functions that represent a continuum from smooth surfaces to sharp edges and corners. Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation. This method enables efficient and robust surface reconstruction from point clouds without the need for shape-specific training. Additionally, our method exhibits enhanced resilience to noise and outliers in point clouds compared to existing methods. We present comprehensive experiments and comparisons across various datasets, including synthetic and real-scanned point clouds, to validate our method's efficacy.
Related papers
- Unsupervised Occupancy Learning from Sparse Point Cloud [8.732260277121547]
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities.
In this paper, we propose a method to infer occupancy fields instead of Neural Signed Distance Functions.
We highlight its capacity to improve implicit shape inference with respect to baselines and the state-of-the-art using synthetic and real data.
arXiv Detail & Related papers (2024-04-03T14:05:39Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization [54.69408516025872]
CAP-UDF is a novel method to learn consistency-aware UDF from raw point clouds.
We train a neural network to gradually infer the relationship between queries and the approximated surface.
We also introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF.
arXiv Detail & Related papers (2022-10-06T08:51:08Z) - Concentric Spherical GNN for 3D Representation Learning [53.45704095146161]
We propose a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps.
Our hierarchical architecture is based on alternatively learning to incorporate both intra-sphere and inter-sphere information.
We demonstrate the effectiveness of our approach in improving state-of-the-art performance on 3D classification tasks with rotated data.
arXiv Detail & Related papers (2021-03-18T19:05:04Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
We propose a learning-based framework for predicting sharp geometric features in sampled 3D shapes.
By fusing the result of individual patches, we can process large 3D models, which are impossible to process for existing data-driven methods.
arXiv Detail & Related papers (2020-11-30T18:21:00Z) - Learning Occupancy Function from Point Clouds for Surface Reconstruction [6.85316573653194]
Implicit function based surface reconstruction has been studied for a long time to recover 3D shapes from point clouds sampled from surfaces.
This paper proposes a novel method for learning occupancy functions from sparse point clouds and achieves better performance on challenging surface reconstruction tasks.
arXiv Detail & Related papers (2020-10-22T02:07:29Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
arXiv Detail & Related papers (2020-04-06T16:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.