Image Synthesis for Data Augmentation in Medical CT using Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2103.10493v2
- Date: Mon, 22 Mar 2021 01:00:38 GMT
- Title: Image Synthesis for Data Augmentation in Medical CT using Deep
Reinforcement Learning
- Authors: Arjun Krishna, Kedar Bartake, Chuang Niu, Ge Wang, Youfang Lai, Xun
Jia, Klaus Mueller
- Abstract summary: We show that our method bears high promise for generating novel and anatomically accurate high resolution CT images at large and diverse quantities.
Our approach is specifically designed to work with even small image datasets which is desirable given the often low amount of image data many researchers have available to them.
- Score: 31.677682150726383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has shown great promise for CT image reconstruction, in
particular to enable low dose imaging and integrated diagnostics. These merits,
however, stand at great odds with the low availability of diverse image data
which are needed to train these neural networks. We propose to overcome this
bottleneck via a deep reinforcement learning (DRL) approach that is integrated
with a style-transfer (ST) methodology, where the DRL generates the anatomical
shapes and the ST synthesizes the texture detail. We show that our method bears
high promise for generating novel and anatomically accurate high resolution CT
images at large and diverse quantities. Our approach is specifically designed
to work with even small image datasets which is desirable given the often low
amount of image data many researchers have available to them.
Related papers
- Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - Enhancing Super-Resolution Networks through Realistic Thick-Slice CT Simulation [4.43162303545687]
Deep learning-based Generative Models have the potential to convert low-resolution CT images into high-resolution counterparts without long acquisition times and increased radiation exposure in thin-slice CT imaging.
procuring appropriate training data for these Super-Resolution (SR) models is challenging.
Previous SR research has simulated thick-slice CT images from thin-slice CT images to create training pairs.
We introduce a simple yet realistic method to generate thick CT images from thin-slice CT images, facilitating the creation of training pairs for SR algorithms.
arXiv Detail & Related papers (2023-07-02T11:09:08Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
Low radiation dose may result in increased noise and artifacts, which greatly affected the clinical diagnosis.
To obtain high-quality Total-body Low-dose CT (LDCT) images, previous deep-learning-based research work has introduced various network architectures.
In this paper, we propose a novel intra-task knowledge transfer method that leverages the distilled knowledge from NDCT images.
arXiv Detail & Related papers (2021-12-01T06:46:38Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
We propose the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes when trained on a small dataset of chest CT-scans.
We show that CT-SGAN can significantly improve lung detection accuracy by pre-training a nodule on a vast amount of synthetic data.
arXiv Detail & Related papers (2021-10-14T22:20:40Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.