Multi-View Vertebra Localization and Identification from CT Images
- URL: http://arxiv.org/abs/2307.12845v1
- Date: Mon, 24 Jul 2023 14:43:07 GMT
- Title: Multi-View Vertebra Localization and Identification from CT Images
- Authors: Han Wu, Jiadong Zhang, Yu Fang, Zhentao Liu, Nizhuan Wang, Zhiming Cui
and Dinggang Shen
- Abstract summary: We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
- Score: 57.56509107412658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately localizing and identifying vertebrae from CT images is crucial for
various clinical applications. However, most existing efforts are performed on
3D with cropping patch operation, suffering from the large computation costs
and limited global information. In this paper, we propose a multi-view vertebra
localization and identification from CT images, converting the 3D problem into
a 2D localization and identification task on different views. Without the
limitation of the 3D cropped patch, our method can learn the multi-view global
information naturally. Moreover, to better capture the anatomical structure
information from different view perspectives, a multi-view contrastive learning
strategy is developed to pre-train the backbone. Additionally, we further
propose a Sequence Loss to maintain the sequential structure embedded along the
vertebrae. Evaluation results demonstrate that, with only two 2D networks, our
method can localize and identify vertebrae in CT images accurately, and
outperforms the state-of-the-art methods consistently. Our code is available at
https://github.com/ShanghaiTech-IMPACT/Multi-View-Vertebra-Localization-and-Identification-from-CT-I mages.
Related papers
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Self-Supervised Alignment Learning for Medical Image Segmentation [26.114595114732644]
We propose a novel self-supervised alignment learning framework to pre-train the neural network for medical image segmentation.
The proposed framework consists of a new local alignment loss and a global positional loss.
Experimental results show that the proposed alignment learning is competitive with existing self-supervised pre-training approaches on CT and MRI datasets.
arXiv Detail & Related papers (2024-06-22T00:47:39Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - 3D Matting: A Soft Segmentation Method Applied in Computed Tomography [26.25446145993599]
Three-dimensional (3D) images, such as CT, MRI, and PET, are common in medical imaging applications and important in clinical diagnosis.
Semantic ambiguity is a typical feature of many medical image labels.
In 2D medical images, using soft masks instead of binary masks generated by image matting to characterize lesions can provide rich semantic information.
arXiv Detail & Related papers (2022-09-16T10:18:59Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Automatic Segmentation, Localization, and Identification of Vertebrae in
3D CT Images Using Cascaded Convolutional Neural Networks [22.572414102512358]
This paper presents a method for automatic segmentation, localization, and identification of vertebrae in 3D CT images.
Our method tackles all these tasks in a single multi-stage framework without any assumptions.
Our method achieved a mean Dice score of 96%, a mean localization error of 8.3 mm, and a mean identification rate of 84%.
arXiv Detail & Related papers (2020-09-29T06:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.