Improving Image co-segmentation via Deep Metric Learning
- URL: http://arxiv.org/abs/2103.10670v1
- Date: Fri, 19 Mar 2021 07:30:42 GMT
- Title: Improving Image co-segmentation via Deep Metric Learning
- Authors: Zhengwen Li, Xiabi Liu
- Abstract summary: We propose a novel Triplet loss for Image, called IS-Triplet loss for short, and combine it with traditional image segmentation loss.
We apply the proposed approach to image co-segmentation and test it on the SBCoseg dataset and the Internet dataset.
- Score: 1.5076964620370268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Metric Learning (DML) is helpful in computer vision tasks. In this
paper, we firstly introduce DML into image co-segmentation. We propose a novel
Triplet loss for Image Segmentation, called IS-Triplet loss for short, and
combine it with traditional image segmentation loss. Different from the general
DML task which learns the metric between pictures, we treat each pixel as a
sample, and use their embedded features in high-dimensional space to form
triples, then we tend to force the distance between pixels of different
categories greater than of the same category by optimizing IS-Triplet loss so
that the pixels from different categories are easier to be distinguished in the
high-dimensional feature space. We further present an efficient triple sampling
strategy to make a feasible computation of IS-Triplet loss. Finally, the
IS-Triplet loss is combined with 3 traditional image segmentation losses to
perform image segmentation. We apply the proposed approach to image
co-segmentation and test it on the SBCoseg dataset and the Internet dataset.
The experimental result shows that our approach can effectively improve the
discrimination of pixels' categories in high-dimensional space and thus help
traditional loss achieve better performance of image segmentation with fewer
training epochs.
Related papers
- Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization [4.8454936010479335]
We propose a Multi-view Pixel-wise Contrastive algorithm (MPC) for image forgery localization.
Specifically, we first pre-train the backbone network with the supervised contrastive loss.
Then the localization head is fine-tuned using the cross-entropy loss, resulting in a better pixel localizer.
arXiv Detail & Related papers (2024-06-19T13:51:52Z) - Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
We introduce a novel Uncertainty-Aware (SAUNA) transform, which adds pixel uncertainty to the ground truth.
Our results indicate that the integration of the SAUNA transform and these segmentation losses led to significant performance boosts for different segmentation models.
arXiv Detail & Related papers (2024-05-27T04:17:10Z) - SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings [12.79344668998054]
We propose SwIPE (Segmentation with Implicit Patch Embeddings) to enable accurate local boundary delineation and global shape coherence.
We show that SwIPE significantly improves over recent implicit approaches and outperforms state-of-the-art discrete methods with over 10x fewer parameters.
arXiv Detail & Related papers (2023-07-23T20:55:11Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
We propose a novel semi-supervised learning framework for segmentation of volumetric images from new unlabeled domains.
We jointly use supervised and contrastive learning, also introducing a contrastive pairing scheme that leverages similarity between nearby slices in 3D.
arXiv Detail & Related papers (2022-03-07T19:02:26Z) - Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation [22.920856071095915]
We present a novel semi-supervised semantic segmentation method which jointly achieves two desiderata of segmentation model regularities.
We leverage the pixel-level L2 loss and the pixel contrastive loss for the two purposes respectively.
arXiv Detail & Related papers (2021-08-20T07:04:33Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z) - The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance
Segmentation [15.768804877756384]
We propose a greedy algorithm for joint graph partitioning and labeling.
Due to the algorithm's efficiency it can operate directly on pixels without prior over-segmentation of the image into superpixels.
arXiv Detail & Related papers (2019-12-29T19:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.