Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet
- URL: http://arxiv.org/abs/2006.14702v1
- Date: Thu, 25 Jun 2020 21:10:04 GMT
- Title: Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet
- Authors: Hongxu Yang, Caifeng Shan, Alexander F. Kolen, Peter H. N. de With
- Abstract summary: We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
- Score: 74.22397862400177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Catheter segmentation in 3D ultrasound is important for computer-assisted
cardiac intervention. However, a large amount of labeled images are required to
train a successful deep convolutional neural network (CNN) to segment the
catheter, which is expensive and time-consuming. In this paper, we propose a
novel catheter segmentation approach, which requests fewer annotations than the
supervised learning method, but nevertheless achieves better performance. Our
scheme considers a deep Q learning as the pre-localization step, which avoids
voxel-level annotation and which can efficiently localize the target catheter.
With the detected catheter, patch-based Dual-UNet is applied to segment the
catheter in 3D volumetric data. To train the Dual-UNet with limited labeled
images and leverage information of unlabeled images, we propose a novel
semi-supervised scheme, which exploits unlabeled images based on hybrid
constraints from predictions. Experiments show the proposed scheme achieves a
higher performance than state-of-the-art semi-supervised methods, while it
demonstrates that our method is able to learn from large-scale unlabeled
images.
Related papers
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - 3D Vascular Segmentation Supervised by 2D Annotation of Maximum
Intensity Projection [33.34240545722551]
Vascular structure segmentation plays a crucial role in medical analysis and clinical applications.
Existing weakly supervised methods have exhibited suboptimal performance when handling sparse vascular structure.
Here, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation.
We introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance.
arXiv Detail & Related papers (2024-02-19T13:24:46Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
We propose a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation.
The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-05-19T14:42:49Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
We propose a semi-supervised learning framework for instrument segmentation in 3D US.
To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument.
Our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume.
arXiv Detail & Related papers (2021-07-30T07:59:45Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.