Learning Multiscale Correlations for Human Motion Prediction
- URL: http://arxiv.org/abs/2103.10674v1
- Date: Fri, 19 Mar 2021 07:58:16 GMT
- Title: Learning Multiscale Correlations for Human Motion Prediction
- Authors: Honghong Zhou, Caili Guo, Hao Zhang and Yanjun Wang
- Abstract summary: We propose a novel multiscale graph convolution network (MGCN) to capture the correlations among human body components.
We evaluate our approach on two standard benchmark datasets for human motion prediction.
- Score: 10.335804615372629
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In spite of the great progress in human motion prediction, it is still a
challenging task to predict those aperiodic and complicated motions. We believe
that to capture the correlations among human body components is the key to
understand the human motion. In this paper, we propose a novel multiscale graph
convolution network (MGCN) to address this problem. Firstly, we design an
adaptive multiscale interactional encoding module (MIEM) which is composed of
two sub modules: scale transformation module and scale interaction module to
learn the human body correlations. Secondly, we apply a coarse-to-fine decoding
strategy to decode the motions sequentially. We evaluate our approach on two
standard benchmark datasets for human motion prediction: Human3.6M and CMU
motion capture dataset. The experiments show that the proposed approach
achieves the state-of-the-art performance for both short-term and long-term
prediction especially in those complicated action category.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Multi-agent Long-term 3D Human Pose Forecasting via Interaction-aware Trajectory Conditioning [41.09061877498741]
We propose an interaction-aware trajectory-conditioned long-term multi-agent human pose forecasting model.
Our model effectively handles the multi-modality of human motion and the complexity of long-term multi-agent interactions.
arXiv Detail & Related papers (2024-04-08T06:15:13Z) - Multiscale Residual Learning of Graph Convolutional Sequence Chunks for
Human Motion Prediction [23.212848643552395]
A new method is proposed for human motion prediction by learning temporal and spatial dependencies.
Our proposed method is able to effectively model the sequence information for motion prediction and outperform other techniques to set a new state-of-the-art.
arXiv Detail & Related papers (2023-08-31T15:23:33Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion
Prediction [13.177817435234449]
3D multi-person motion prediction is a challenging task that involves modeling individual behaviors and interactions between people.
We introduce the Multi-Person Interaction Motion (MI-Motion) dataset, which includes skeleton sequences of multiple individuals collected by motion capture systems.
The dataset contains 167k frames of interacting people's skeleton poses and is categorized into 5 different activity scenes.
arXiv Detail & Related papers (2023-06-23T15:38:22Z) - STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a
Non-Autoregressive Transformer for Robot Following Ahead [8.227864212055035]
We develop a neural network model to predict future human motion from an observed human motion history.
We propose a non-autoregressive transformer architecture to leverage its parallel nature for easier training and fast, accurate predictions at test time.
Our model is well-suited for robotic applications in terms of test accuracy and speed favorably with respect to state-of-the-art methods.
arXiv Detail & Related papers (2022-09-15T20:27:54Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences.
We show that the performance of these approaches can be surpassed by a light-weight and purely architectural architecture with only 0.14M parameters.
An exhaustive evaluation on Human3.6M, AMASS and 3DPW datasets shows that our method, which we dub siMLPe, consistently outperforms all other approaches.
arXiv Detail & Related papers (2022-07-04T16:35:58Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction [2.580765958706854]
3D skeleton-based motion prediction and activity recognition are two interwoven tasks in human behaviour analysis.
We propose a new way to combine the advantages of both graph convolutional neural networks and recurrent neural networks for joint human motion prediction and activity recognition.
arXiv Detail & Related papers (2021-08-03T14:07:10Z) - Motion Prediction Using Temporal Inception Module [96.76721173517895]
We propose a Temporal Inception Module (TIM) to encode human motion.
Our framework produces input embeddings using convolutional layers, by using different kernel sizes for different input lengths.
The experimental results on standard motion prediction benchmark datasets Human3.6M and CMU motion capture dataset show that our approach consistently outperforms the state of the art methods.
arXiv Detail & Related papers (2020-10-06T20:26:01Z) - Dynamic Multiscale Graph Neural Networks for 3D Skeleton-Based Human
Motion Prediction [102.9787019197379]
We propose novel dynamic multiscale graph neural networks (DMGNN) to predict 3D skeleton-based human motions.
The model is action-category-agnostic and follows an encoder-decoder framework.
The proposed DMGNN outperforms state-of-the-art methods in both short and long-term predictions.
arXiv Detail & Related papers (2020-03-17T02:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.