論文の概要: Acoustic word embeddings for zero-resource languages using
self-supervised contrastive learning and multilingual adaptation
- arxiv url: http://arxiv.org/abs/2103.10731v1
- Date: Fri, 19 Mar 2021 11:08:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 17:26:20.188248
- Title: Acoustic word embeddings for zero-resource languages using
self-supervised contrastive learning and multilingual adaptation
- Title(参考訳): 自己教師付きコントラスト学習と多言語適応を用いたゼロリソース言語のための音響単語埋め込み
- Authors: Christiaan Jacobs, Yevgen Matusevych, Herman Kamper
- Abstract要約: 純粋に教師なしと多言語転送設定の両方で、対照的な学習損失が利用できるかを検討する。
非教師付き項発見システムからの用語は、コントラスト的自己スーパービジョンに使用できることを示す。
自己監督型コントラスト適応は、多言語対応オートエンコーダとSiamese AWEモデルに適応した。
- 参考スコア(独自算出の注目度): 30.669442499082443
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Acoustic word embeddings (AWEs) are fixed-dimensional representations of
variable-length speech segments. For zero-resource languages where labelled
data is not available, one AWE approach is to use unsupervised
autoencoder-based recurrent models. Another recent approach is to use
multilingual transfer: a supervised AWE model is trained on several
well-resourced languages and then applied to an unseen zero-resource language.
We consider how a recent contrastive learning loss can be used in both the
purely unsupervised and multilingual transfer settings. Firstly, we show that
terms from an unsupervised term discovery system can be used for contrastive
self-supervision, resulting in improvements over previous unsupervised
monolingual AWE models. Secondly, we consider how multilingual AWE models can
be adapted to a specific zero-resource language using discovered terms. We find
that self-supervised contrastive adaptation outperforms adapted multilingual
correspondence autoencoder and Siamese AWE models, giving the best overall
results in a word discrimination task on six zero-resource languages.
- Abstract(参考訳): 音響単語埋め込み(AWEs)は、可変長音声セグメントの固定次元表現である。
ラベル付きデータがないゼロリソース言語の場合、aweアプローチの一つは教師なしのオートエンコーダベースのリカレントモデルを使用することである。
教師付きAWEモデルは、複数の十分なリソースを持つ言語で訓練され、目に見えないゼロリソース言語に適用されます。
本稿では, 教師なしと多言語移動の設定の両方において, 最近のコントラスト学習損失をいかに活用するかを検討する。
まず、教師なし項発見システムからの用語は対照的な自己スーパービジョンに利用でき、従来の教師なし単言語AWEモデルよりも改善されることを示す。
第二に,多言語aweモデルが検出された用語を用いて,特定のゼロリソース言語にどのように適応できるかを検討する。
自己教師付きコントラスト適応は,多言語対応オートエンコーダやシャム語aweモデルよりも優れており,6つのゼロリソース言語における単語識別タスクにおいて最良である。
関連論文リスト
- Multilingual acoustic word embeddings for zero-resource languages [1.5229257192293204]
音響単語埋め込み (AWE) - 可変重み付き音声セグメントの固定次元表現。
この研究は、ゼロリソース言語上の既存のAWEモデルを上回る、新しいニューラルネットワークを導入している。
AWEは、スワヒリ放送におけるヘイトスピーチ検出のためのキーワードスポッティングシステムに適用される。
論文 参考訳(メタデータ) (2024-01-19T08:02:37Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
我々のモデルは,現在の最先端手法よりも桁違いに小さく,高速でありながら,競争力のある結果が得られることを示す。
我々のマルチラベル戦略は、マルチクラス分類よりも非ターゲット言語の方が堅牢である。
論文 参考訳(メタデータ) (2023-06-02T23:04:19Z) - LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and
Translation Using Neural Transducers [71.76680102779765]
自動音声認識(ASR)と音声翻訳(ST)はどちらもモデル構造としてニューラルトランスデューサを使用することができる。
ニューラルトランスデューサを用いた多言語音声認識および翻訳モデルであるLAMASSUを提案する。
論文 参考訳(メタデータ) (2022-11-05T04:03:55Z) - A Survey of Multilingual Models for Automatic Speech Recognition [6.657361001202456]
言語間移動は多言語自動音声認識の課題に対する魅力的な解法である。
自己監督学習の最近の進歩は、多言語ASRモデルで使用されるラベルなし音声データへの道を開いた。
多様な言語や技術の研究から多言語モデルを構築するためのベストプラクティスを提示する。
論文 参考訳(メタデータ) (2022-02-25T09:31:40Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Multilingual Jointly Trained Acoustic and Written Word Embeddings [22.63696520064212]
このアイデアを複数の低リソース言語に拡張します。
我々は、複数の言語から音声で書き起こされたデータを用いて、AWEモデルとAGWEモデルを共同で訓練する。
事前トレーニングされたモデルは、目に見えないゼロリソース言語や、低リソース言語のデータを微調整するために使用することができる。
論文 参考訳(メタデータ) (2020-06-24T19:16:02Z) - Improved acoustic word embeddings for zero-resource languages using
multilingual transfer [37.78342106714364]
我々は、ラベル付きデータに対する複数の良質な言語からの単一の教師付き埋め込みモデルを訓練し、それを目に見えないゼロ・リソース言語に適用する。
本稿では,3つのマルチリンガルリカレントニューラルネットワーク(RNN)モデルについて考察する。全ての訓練言語の連接語彙に基づいて訓練された分類器,複数言語から同一語と異なる単語を識別する訓練されたシームズRNN,単語ペアを再構成する訓練された対応オートエンコーダ(CAE)RNNである。
これらのモデルは、ゼロリソース言語自体で訓練された最先端の教師なしモデルよりも優れており、平均精度が30%以上向上している。
論文 参考訳(メタデータ) (2020-06-02T12:28:34Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - Multilingual acoustic word embedding models for processing zero-resource
languages [37.78342106714364]
我々は,複数言語からのラベル付きデータに対して,単一の教師付き埋め込みモデルを訓練する。
次に、見知らぬゼロリソース言語に適用します。
論文 参考訳(メタデータ) (2020-02-06T05:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。