Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies
- URL: http://arxiv.org/abs/2108.10152v1
- Date: Wed, 18 Aug 2021 21:55:20 GMT
- Title: Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies
- Authors: Sicheng Zhao, Guoli Jia, Jufeng Yang, Guiguang Ding, Kurt Keutzer
- Abstract summary: We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
- Score: 106.62835060095532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans are emotional creatures. Multiple modalities are often involved when
we express emotions, whether we do so explicitly (e.g., facial expression,
speech) or implicitly (e.g., text, image). Enabling machines to have emotional
intelligence, i.e., recognizing, interpreting, processing, and simulating
emotions, is becoming increasingly important. In this tutorial, we discuss
several key aspects of multi-modal emotion recognition (MER). We begin with a
brief introduction on widely used emotion representation models and affective
modalities. We then summarize existing emotion annotation strategies and
corresponding computational tasks, followed by the description of main
challenges in MER. Furthermore, we present some representative approaches on
representation learning of each affective modality, feature fusion of different
affective modalities, classifier optimization for MER, and domain adaptation
for MER. Finally, we outline several real-world applications and discuss some
future directions.
Related papers
- EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
Multi-modal large language models (MLLMs) have achieved remarkable performance on objective multimodal perception tasks.
But their ability to interpret subjective, emotionally nuanced multimodal content remains largely unexplored.
EmoLLM is a novel model for multimodal emotional understanding, incorporating with two core techniques.
arXiv Detail & Related papers (2024-06-24T08:33:02Z) - UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion
Recognition [32.34485263348587]
Multimodal sentiment analysis (MSA) and emotion recognition in conversation (ERC) are key research topics for computers to understand human behaviors.
We propose a multimodal sentiment knowledge-sharing framework (UniMSE) that unifies MSA and ERC tasks from features, labels, and models.
We perform modality fusion at the syntactic and semantic levels and introduce contrastive learning between modalities and samples to better capture the difference and consistency between sentiments and emotions.
arXiv Detail & Related papers (2022-11-21T08:46:01Z) - Multi-Cue Adaptive Emotion Recognition Network [4.570705738465714]
We propose a new deep learning approach for emotion recognition based on adaptive multi-cues.
We compare the proposed approach with the state-of-art approaches in the CAER-S dataset.
arXiv Detail & Related papers (2021-11-03T15:08:55Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
We propose a stimuli-aware visual emotion analysis (VEA) method consisting of three stages, namely stimuli selection, feature extraction and emotion prediction.
To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network.
Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets.
arXiv Detail & Related papers (2021-09-04T08:14:52Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Multi-Task Learning and Adapted Knowledge Models for Emotion-Cause
Extraction [18.68808042388714]
We present solutions that tackle both emotion recognition and emotion cause detection in a joint fashion.
Considering that common-sense knowledge plays an important role in understanding implicitly expressed emotions, we propose novel methods.
We show performance improvement on both tasks when including common-sense reasoning and a multitask framework.
arXiv Detail & Related papers (2021-06-17T20:11:04Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective.
We begin with commonly used emotion representation models from psychology.
We then define the key computational problems that the researchers have been trying to solve.
arXiv Detail & Related papers (2021-03-19T13:33:34Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - Temporal aggregation of audio-visual modalities for emotion recognition [0.5352699766206808]
We propose a multimodal fusion technique for emotion recognition based on combining audio-visual modalities from a temporal window with different temporal offsets for each modality.
Our proposed method outperforms other methods from the literature and human accuracy rating.
arXiv Detail & Related papers (2020-07-08T18:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.