Are High-Frequency Components Beneficial for Training of Generative
Adversarial Networks
- URL: http://arxiv.org/abs/2103.11093v1
- Date: Sat, 20 Mar 2021 04:37:06 GMT
- Title: Are High-Frequency Components Beneficial for Training of Generative
Adversarial Networks
- Authors: Ziqiang Li, Pengfei Xia, Xue Rui, Yanghui Hu, Bin Li
- Abstract summary: Generative Adversarial Networks (GANs) have the ability to generate realistic images that are visually indistinguishable from real images.
Recent studies of the image spectrum have demonstrated that generated and real images share significant differences at high frequency.
We propose two preprocessing methods eliminating high-frequency differences in GANs training.
- Score: 11.226288436817956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in Generative Adversarial Networks (GANs) have the ability to
generate realistic images that are visually indistinguishable from real images.
However, recent studies of the image spectrum have demonstrated that generated
and real images share significant differences at high frequency. Furthermore,
the high-frequency components invisible to human eyes affect the decision of
CNNs and are related to the robustness of it. Similarly, whether the
discriminator will be sensitive to the high-frequency differences, thus
reducing the fitting ability of the generator to the low-frequency components
is an open problem. In this paper, we demonstrate that the discriminator in
GANs is sensitive to such high-frequency differences that can not be
distinguished by humans and the high-frequency components of images are not
conducive to the training of GANs. Based on these, we propose two preprocessing
methods eliminating high-frequency differences in GANs training: High-Frequency
Confusion (HFC) and High-Frequency Filter (HFF). The proposed methods are
general and can be easily applied to most existing GANs frameworks with a
fraction of the cost. The advanced performance of the proposed method is
verified on multiple loss functions, network architectures, and datasets.
Related papers
- FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Spectrum Translation for Refinement of Image Generation (STIG) Based on
Contrastive Learning and Spectral Filter Profile [15.5188527312094]
We propose a framework to mitigate the disparity in frequency domain of the generated images.
This is realized by spectrum translation for the refinement of image generation (STIG) based on contrastive learning.
We evaluate our framework across eight fake image datasets and various cutting-edge models to demonstrate the effectiveness of STIG.
arXiv Detail & Related papers (2024-03-08T06:39:24Z) - Low-Light Enhancement in the Frequency Domain [24.195131201768096]
Decreased visibility, intensive noise, and biased color are the common problems existing in low-light images.
We propose a novel residual recurrent multi-wavelet convolutional neural network R2-MWCNN learned in the frequency domain.
This end-to-end trainable network utilizes a multi-level discrete wavelet transform to divide input feature maps into distinct frequencies, resulting in a better denoise impact.
arXiv Detail & Related papers (2023-06-29T08:39:34Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
We propose a novel network architecture denoted as IGNet, in order to refine the frequency bands from low to high in a progressive manner.
With this design, more inter-frequency prior and information are utilized, thus the model size can be lightened while still perserves competitive results.
arXiv Detail & Related papers (2021-12-22T10:35:53Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
Loss of corresponding image resolution degrades the overall performance of medical image diagnosis.
Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework.
This work proposes generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data.
arXiv Detail & Related papers (2021-10-22T10:13:46Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
We show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further.
We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize.
arXiv Detail & Related papers (2020-12-23T17:32:04Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
We propose blur, noise, and compression robust GAN (BNCR-GAN) to learn a clean image generator directly from degraded images.
Inspired by NR-GAN, BNCR-GAN uses a multiple-generator model composed of image, blur- Kernel, noise, and quality-factor generators.
We demonstrate the effectiveness of BNCR-GAN through large-scale comparative studies on CIFAR-10 and a generality analysis on FFHQ.
arXiv Detail & Related papers (2020-03-17T17:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.