論文の概要: Learning Optimal Fronthauling and Decentralized Edge Computation in Fog
Radio Access Networks
- arxiv url: http://arxiv.org/abs/2103.11284v1
- Date: Sun, 21 Mar 2021 01:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:10:44.250521
- Title: Learning Optimal Fronthauling and Decentralized Edge Computation in Fog
Radio Access Networks
- Title(参考訳): フォッグ無線アクセスネットワークにおける最適フロントハウリングと分散エッジ計算の学習
- Authors: Hoon Lee, Junbeom Kim, Seok-Hwan Park
- Abstract要約: Fog Radio Access Network (F-RAN) はクラウドと、フロントホールリンクを介して接続される複数のエッジノード(EN)で構成される。
本稿では,F-RAN最適化問題に対する構造的深層学習機構を提案する。
提案手法は,クラウド上の集中型コンピューティング,ENにおける分散決定,およびアップリンク-ダウンリンクフロントホール相互作用を含む,クラウド支援型協調最適化ポリシを模倣する。
- 参考スコア(独自算出の注目度): 14.429561340880074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fog radio access networks (F-RANs), which consist of a cloud and multiple
edge nodes (ENs) connected via fronthaul links, have been regarded as promising
network architectures. The F-RAN entails a joint optimization of cloud and edge
computing as well as fronthaul interactions, which is challenging for
traditional optimization techniques. This paper proposes a Cloud-Enabled
Cooperation-Inspired Learning (CECIL) framework, a structural deep learning
mechanism for handling a generic F-RAN optimization problem. The proposed
solution mimics cloud-aided cooperative optimization policies by including
centralized computing at the cloud, distributed decision at the ENs, and their
uplink-downlink fronthaul interactions. A group of deep neural networks (DNNs)
are employed for characterizing computations of the cloud and ENs. The
forwardpass of the DNNs is carefully designed such that the impacts of the
practical fronthaul links, such as channel noise and signling overheads, can be
included in a training step. As a result, operations of the cloud and ENs can
be jointly trained in an end-to-end manner, whereas their real-time inferences
are carried out in a decentralized manner by means of the fronthaul
coordination. To facilitate fronthaul cooperation among multiple ENs, the
optimal fronthaul multiple access schemes are designed. Training algorithms
robust to practical fronthaul impairments are also presented. Numerical results
validate the effectiveness of the proposed approaches.
- Abstract(参考訳): フォグ無線アクセスネットワーク (f-rans) はクラウドと複数のエッジノード (ens) をフロントホールリンクで接続し、有望なネットワークアーキテクチャと見なされている。
F-RANは、クラウドとエッジコンピューティングの協調最適化と、従来の最適化技術では難しいフロントホールインタラクションを必要とする。
本稿では、一般的なF-RAN最適化問題を扱うための構造的深層学習機構であるCloud-Enabled Cooperation-Inspired Learning (CECIL)フレームワークを提案する。
提案手法は,クラウド上の集中型コンピューティング,ENにおける分散決定,およびアップリンク-ダウンリンクフロントホール相互作用を含む,クラウド支援型協調最適化ポリシを模倣する。
クラウドとENの計算を特徴付けるために、ディープニューラルネットワーク(DNN)のグループが使用されている。
DNNのフォワードパスは、チャネルノイズやサインリングオーバーヘッドなどの実用的なフロントホールリンクの影響をトレーニングステップに含めるように慎重に設計されている。
その結果、クラウドとENの操作をエンドツーエンドで共同で訓練できる一方、リアルタイムの推論はフロントホール調整により分散的に行うことができる。
複数のen間のフロントホール連携を容易にするために、最適なフロントホール多重アクセススキームを設計する。
実用的フロントホール障害に対して堅牢なトレーニングアルゴリズムも提示する。
提案手法の有効性を数値計算により検証した。
関連論文リスト
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Task-Oriented Edge Networks: Decentralized Learning Over Wireless
Fronthaul [13.150679121986792]
本稿では,複数のエッジノードがネットワーククラウド上で強力なディープニューラルネットワーク(DNN)の助けを借りて機械学習タスクを実行するタスク指向エッジネットワークについて検討する。
論文 参考訳(メタデータ) (2023-12-03T05:24:28Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Layer Collaboration in the Forward-Forward Algorithm [28.856139738073626]
フォワードフォワードアルゴリズムにおける層間協調について検討する。
ネットワーク内の情報の流れを考慮した場合, フォワードアルゴリズムの現在のバージョンが最適であることを示す。
ネットワーク構造をよりよく活用するために,レイヤコラボレーションをサポートする改良版を提案する。
論文 参考訳(メタデータ) (2023-05-21T08:12:54Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Semi-asynchronous Hierarchical Federated Learning for Cooperative
Intelligent Transportation Systems [10.257042901204528]
コラボレーティブ・インテリジェント・トランスポート・システム(C-ITS)は、自動運転車や道路インフラの安全性、効率性、持続可能性、快適なサービスを提供する有望なネットワークである。
C-ITSのコンポーネントは通常大量のデータを生成するため、データサイエンスを探索することは困難である。
本稿では,C-ITSのためのSemi-a synchronous Federated Learning (SHFL) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-18T07:44:34Z) - Deep Learning Methods for Joint Optimization of Beamforming and
Fronthaul Quantization in Cloud Radio Access Networks [12.838832724944615]
クラウド無線ネットワーク(C-RAN)システムでは,AP間の協調ビームフォーミングとフロントハウライズ戦略が不可欠である。
非次元量問題は、AP当たりの電力とフロントホール容量の制約から導かれる。
我々は、よく訓練された深層ニューラルネットワーク(DNN)が存在する深層学習最適化モジュールについて検討する。
提案手法の利点を数値計算により検証した。
論文 参考訳(メタデータ) (2021-07-06T10:27:43Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
本稿では、残差接続と畳み込み層の両方を受け入れる一般化微分動的プログラミング(DDP)ニューラルアーキテクチャを提案する。
得られた最適制御表現は、トレーニング残余ネットワークを、状態拡張システム上での協調的軌道最適化と解釈できるゲーム論的視点を許容する。
論文 参考訳(メタデータ) (2020-07-17T10:19:17Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。