論文の概要: Structural block driven - enhanced convolutional neural representation
for relation extraction
- arxiv url: http://arxiv.org/abs/2103.11356v1
- Date: Sun, 21 Mar 2021 10:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 15:01:28.566116
- Title: Structural block driven - enhanced convolutional neural representation
for relation extraction
- Title(参考訳): 相関抽出のための構造ブロック駆動-強化畳み込みニューラル表現
- Authors: Dongsheng Wang, Prayag Tiwari, Sahil Garg, Hongyin Zhu, Peter Bruza
- Abstract要約: 本稿では,構造ブロック駆動型畳み込みニューラルネットワークの軽量な関係抽出手法を提案する。
構造ブロックとして命名された依存性分析により、エンティティに関連する重要なシーケンシャルトークンを検出します。
我々はマルチスケールcnnを用いてブロックとブロック間の表現のみを符号化する。
- 参考スコア(独自算出の注目度): 11.617819771034927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel lightweight relation extraction approach of
structural block driven - convolutional neural learning. Specifically, we
detect the essential sequential tokens associated with entities through
dependency analysis, named as a structural block, and only encode the block on
a block-wise and an inter-block-wise representation, utilizing multi-scale
CNNs. This is to 1) eliminate the noisy from irrelevant part of a sentence;
meanwhile 2) enhance the relevant block representation with both block-wise and
inter-block-wise semantically enriched representation. Our method has the
advantage of being independent of long sentence context since we only encode
the sequential tokens within a block boundary. Experiments on two datasets
i.e., SemEval2010 and KBP37, demonstrate the significant advantages of our
method. In particular, we achieve the new state-of-the-art performance on the
KBP37 dataset; and comparable performance with the state-of-the-art on the
SemEval2010 dataset.
- Abstract(参考訳): 本稿では,構造ブロック駆動-畳み込みニューラルネットワークの軽量な関係抽出手法を提案する。
具体的には、構造ブロックとして名づけられた依存分析によってエンティティに関連付けられた必須のシーケンシャルトークンを検出し、マルチスケールcnnを用いてブロックとブロック間の表現のみをエンコードする。
これは、1)文の無関係部分からノイズを取り除く一方で、2)ブロックワイドとブロックワイドのセマンティックエンリッチド表現の両方で関連するブロック表現を強化する。
本手法は,ブロック境界内の逐次トークンのみをエンコードするため,長文文脈に依存しない利点を有する。
SemEval2010 と KBP37 の2つのデータセットの実験により,本手法の利点が示された。
特に,kbp37データセットにおける新たな最先端性能を達成し,semeval2010データセットの最先端性能と比較した。
関連論文リスト
- Improved Block Merging for 3D Point Cloud Instance Segmentation [6.632158868486343]
提案手法は,すでに処理されているブロックの不正なラベル付き点をラベル伝搬によって修正することにより,最先端技術よりも改善する。
実験の結果,提案手法は,文献に用いた評価指標の精度を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-07-09T16:06:34Z) - Towards Universal Dense Blocking for Entity Resolution [49.06313308481536]
ドメインに依存しない、容易に観測可能なコーパス上で事前学習を行う密集型ブロッカであるUniBlockerを提案する。
ドメインに依存しない事前トレーニングを行うことで、UniBlockerはドメイン固有の微調整を必要とせずに、さまざまなダウンストリームブロッキングシナリオに適応できる。
提案したUniBlockerは、ドメイン固有の学習を一切行わず、従来の自己および教師なしの密なブロッキング手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-04-23T08:39:29Z) - Verification of Neural Network Control Systems using Symbolic Zonotopes
and Polynotopes [1.0312968200748116]
ニューラルネットワーク制御システム(NNCS)の検証と安全性評価は、新たな課題である。
保証を得るためには、検証ツールは、制御ループ内のニューラルネットワークと物理システムの間の相互作用を効率的にキャプチャする必要がある。
NNCSの分析において,長期的シンボル依存の保存に焦点をあてた構成的アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-26T11:52:14Z) - Discriminative Co-Saliency and Background Mining Transformer for
Co-Salient Object Detection [111.04994415248736]
我々は差別的共存とバックグラウンドマイニング・トランスフォーマー・フレームワーク(DMT)を提案する。
我々は2種類の事前定義されたトークンを用いて、コントラスト誘起画素間相関モジュールとコサリエンストークン間相関モジュールを用いて、コサリエンシと背景情報をマイニングする。
3つのベンチマークデータセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-04-30T15:56:47Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Unifying Nonlocal Blocks for Neural Networks [43.107708207022526]
非局所ブロックは、コンピュータビジョンタスクにおける長距離空間的依存関係をキャプチャするために設計されている。
我々はそれらを解釈するための新しい視点を提供し、完全連結グラフ上で生成されたグラフフィルタの集合と見なす。
より堅牢でフレキシブルなスペクトル非局所ブロックを提案する。
論文 参考訳(メタデータ) (2021-08-05T08:34:12Z) - Multi-Modal Association based Grouping for Form Structure Extraction [14.134131448981295]
形態構造抽出のための新しいマルチモーダル手法を提案する。
我々は、TextBlocks、Text Fields、Choice Fields、Choice Groupsなどの高階構造を抽出する。
提案手法は, それぞれ90.29%, 73.80%, 83.12%, 52.72%のリコールを達成している。
論文 参考訳(メタデータ) (2021-07-09T12:49:34Z) - Boosting Span-based Joint Entity and Relation Extraction via Squence
Tagging Mechanism [10.894755638322]
Spanベースの関節抽出は、テキストスパン形式で名前付きエンティティ認識(NER)と関係抽出(RE)を同時に行う。
近年の研究では、トークンラベルは重要なタスク固有の情報を伝達し、トークンのセマンティクスを豊かにすることができることが示されている。
本稿では,Span-based Network(STSN)を提案する。これはSpan-based joint extrac-tion Networkで,トークンBIOラベル情報によって拡張されている。
論文 参考訳(メタデータ) (2021-05-21T01:10:03Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
我々はSqueeze Reasoningと呼ばれる新しいフレームワークを提案する。
空間地図上の情報を伝播するのではなく、まず入力特徴をチャネルワイドなグローバルベクトルに絞ることを学ぶ。
提案手法はエンドツーエンドのトレーニングブロックとしてモジュール化可能であり,既存のネットワークに簡単に接続可能であることを示す。
論文 参考訳(メタデータ) (2020-11-06T12:17:01Z) - Attentive WaveBlock: Complementarity-enhanced Mutual Networks for
Unsupervised Domain Adaptation in Person Re-identification and Beyond [97.25179345878443]
本稿では,新しい軽量モジュールであるAttentive WaveBlock (AWB)を提案する。
AWBは相互学習の二重ネットワークに統合され、相互学習の相補性を高め、擬似ラベルのノイズをさらに抑えることができる。
実験により, 提案手法は, 複数のUDA人物再識別タスクを大幅に改善し, 最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-06-11T15:40:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。