論文の概要: Grey-box Adversarial Attack And Defence For Sentiment Classification
- arxiv url: http://arxiv.org/abs/2103.11576v1
- Date: Mon, 22 Mar 2021 04:05:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 15:05:48.356829
- Title: Grey-box Adversarial Attack And Defence For Sentiment Classification
- Title(参考訳): グレイボックス攻撃とセンチメント分類のための防御
- Authors: Ying Xu, Xu Zhong, Antonio Jimeno Yepes, Jey Han Lau
- Abstract要約: 感情分類のためのグレーボックスの敵対攻撃と防御フレームワークを紹介します。
敵攻撃と防御のための識別性, ラベル保存, 入力再構成の課題を, 1つの統合された枠組みで解決する。
- 参考スコア(独自算出の注目度): 19.466940655682727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a grey-box adversarial attack and defence framework for
sentiment classification. We address the issues of differentiability, label
preservation and input reconstruction for adversarial attack and defence in one
unified framework. Our results show that once trained, the attacking model is
capable of generating high-quality adversarial examples substantially faster
(one order of magnitude less in time) than state-of-the-art attacking methods.
These examples also preserve the original sentiment according to human
evaluation. Additionally, our framework produces an improved classifier that is
robust in defending against multiple adversarial attacking methods. Code is
available at: https://github.com/ibm-aur-nlp/adv-def-text-dist.
- Abstract(参考訳): 感情分類のためのグレイボックス攻撃・防衛フレームワークを提案する。
敵攻撃と防御のための識別性, ラベル保存, 入力再構成の課題を, 1つの統合された枠組みで解決する。
以上の結果から,攻撃モデルでは,最先端の攻撃手法よりも高い精度(一桁の時間差)で高い精度の敵例を生成できることがわかった。
これらの例は、人間の評価に従って元の感情を保存します。
さらに,本フレームワークは,複数対逆攻撃手法の防御に頑健な改良型分類器を生成する。
https://github.com/ibm-aur-nlp/adv-def-text-dist。
関連論文リスト
- Improving Adversarial Robustness via Decoupled Visual Representation Masking [65.73203518658224]
本稿では,特徴分布の観点から,ロバストな特徴の2つの新しい特性を強調した。
現状の防衛手法は、上記の2つの問題にうまく対処することを目的としている。
具体的には、分離された視覚的表現マスキングに基づく、シンプルだが効果的な防御法を提案する。
論文 参考訳(メタデータ) (2024-06-16T13:29:41Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Improving behavior based authentication against adversarial attack using XAI [3.340314613771868]
本稿では,eXplainable AI(XAI)をベースとした,このようなシナリオにおける敵攻撃に対する防御戦略を提案する。
本手法で訓練した特徴セレクタは,元の認証器の前のフィルタとして使用することができる。
我々は,XAIをベースとした防衛戦略が敵の攻撃に対して有効であり,他の防衛戦略よりも優れていることを実証する。
論文 参考訳(メタデータ) (2024-02-26T09:29:05Z) - Robust Person Re-identification with Multi-Modal Joint Defence [1.441703014203756]
既存の仕事は、主にメートル法防衛のための敵の訓練に依存している。
本稿では,メカニカルアタックとディフェンスメソッドのターゲット手法を提案する。
メカニカルディフェンスでは,プロアクティブディフェンスとパッシブディフェンスの2つの部分を含む共同ディフェンス法を提案する。
論文 参考訳(メタデータ) (2021-11-18T08:13:49Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
本稿では,敵対的摂動によって選抜された候補者のランクを引き上げたり下げたりできる,ディープランキングシステムに対する2つの攻撃を提案する。
逆に、全ての攻撃に対するランキングモデルロバスト性を改善するために、反崩壊三重項防御法が提案されている。
MNIST, Fashion-MNIST, CUB200-2011, CARS196およびStanford Online Productsデータセットを用いて, 敵のランク付け攻撃と防御を評価した。
論文 参考訳(メタデータ) (2021-06-07T13:41:45Z) - Internal Wasserstein Distance for Adversarial Attack and Defense [40.27647699862274]
本研究では,サンプルと対比例の画像類似度を測定するための内部Wasserstein距離(IWD)を提案する。
原試料中のパッチの分布を捉えた新しい攻撃手法を開発した。
我々はまた,未知の敵の例から守るためのロバストなモデルを学ぶための新しい防御手法も構築する。
論文 参考訳(メタデータ) (2021-03-13T02:08:02Z) - Robustness Out of the Box: Compositional Representations Naturally
Defend Against Black-Box Patch Attacks [11.429509031463892]
パッチベースの敵攻撃は、誤分類を引き起こす入力に知覚できるが局所的な変化をもたらす。
本研究では,ブラックボックスパッチ攻撃に対する2つの対策について検討する。
敵の訓練は、最先端の位置最適化パッチ攻撃に対する効果が限られていることが判明した。
論文 参考訳(メタデータ) (2020-12-01T15:04:23Z) - Are Adversarial Examples Created Equal? A Learnable Weighted Minimax
Risk for Robustness under Non-uniform Attacks [70.11599738647963]
敵の訓練は、強力な攻撃に耐える数少ない防衛の1つである。
従来の防御機構は、基礎となるデータ分布に従って、サンプルに対する均一な攻撃を前提とします。
非一様攻撃に対して重み付けされたミニマックスリスク最適化を提案する。
論文 参考訳(メタデータ) (2020-10-24T21:20:35Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。