論文の概要: Reinforcement Learning Assisted Beamforming for Inter-cell Interference
Mitigation in 5G Massive MIMO Networks
- arxiv url: http://arxiv.org/abs/2103.11782v2
- Date: Fri, 2 Jul 2021 02:13:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 19:40:38.781920
- Title: Reinforcement Learning Assisted Beamforming for Inter-cell Interference
Mitigation in 5G Massive MIMO Networks
- Title(参考訳): 5G重畳MIMOネットワークにおけるセル間干渉緩和のための強化学習支援ビームフォーミング
- Authors: Aidong Yang, Xinlang Yue, Ye Ouyang
- Abstract要約: ビームフォーミングは、MMIMO(Multiple-input-multiple-output)通信において重要な技術である。
細胞間干渉(ICI)は、周波数再利用技術による5G通信が直面する主な障害の1つである。
5GダウンリンクにおけるICI緩和のための強化学習(RL)支援フルダイナミックビームフォーミングを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Beamforming is an essential technology in the 5G massive
multiple-input-multiple-output (MMIMO) communications, which are subject to
many impairments due to the nature of wireless transmission channel, i.e. the
air. The inter-cell interference (ICI) is one of the main impairments faced by
5G communications due to frequency-reuse technologies. In this paper, we
propose a reinforcement learning (RL) assisted full dynamic beamforming for ICI
mitigation in 5G downlink. The proposed algorithm is a joint of beamforming and
full dynamic Q-learning technology to minimize the ICI, and results in a
low-complexity method without channel estimation. Performance analysis shows
the quality of service improvement in terms of
signal-to-interference-plus-noise-ratio (SINR) and computational complexity
compared to other algorithms.
- Abstract(参考訳): ビームフォーミング(ビームフォーミング)は、5Gの大規模マルチインプット・マルチプルアウトプット(MMIMO)通信において重要な技術であり、無線伝送路の性質、すなわち空気の性質により多くの障害を受ける。
細胞間干渉(ICI)は、周波数再利用技術による5G通信が直面する主な障害の1つである。
本稿では,5GダウンリンクにおけるICI緩和のためのフルダイナミックビームフォーミングを支援する強化学習(RL)を提案する。
提案アルゴリズムは、ICIを最小化するためにビームフォーミングとフルダイナミックQ-ラーニングを併用し、チャネル推定を行なわない低複雑さ手法を実現する。
パフォーマンス分析は、他のアルゴリズムと比較して、sinr(signal-to-interference-plus-noise-ratio)と計算複雑性の観点からサービス改善の品質を示している。
関連論文リスト
- Deep Learning Based Uplink Multi-User SIMO Beamforming Design [32.00286337259923]
5G無線通信ネットワークは、高いデータレート、広範なカバレッジ、最小レイテンシ、エネルギー効率のパフォーマンスを提供する。
計算複雑性や動的条件に適応する能力に関して、従来のアプローチには欠点がある。
本稿では,アップリンク受信型マルチユーザ入力多重出力(MU-SIMO)ビームフォーミングの設計のための,NNBFと呼ばれる新しい教師なしディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-28T17:04:41Z) - Deep Reinforcement Learning for Interference Management in UAV-based 3D
Networks: Potentials and Challenges [137.47736805685457]
チャネル情報を知らなくても干渉を効果的に軽減できることを示す。
干渉を利用することにより、提案された解決策は民間UAVの継続的な成長を可能にする。
論文 参考訳(メタデータ) (2023-05-11T18:06:46Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
モバイルエッジコンピューティング(MEC)は、第5世代(5G)ネットワークなどにおける計算と遅延に敏感なタスクのための新しいパラダイムであると考えた。
本稿では、フリー対応RLに関する総合的な研究レビューと、開発のための洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T10:02:54Z) - A Machine Learning Based Algorithm for Joint Improvement of Power
Control, link adaptation, and Capacity in Beyond 5G Communication systems [4.649999862713524]
本稿では,5世代以上の無線通信システムの性能向上を目的とした,機械学習に基づく新しいアルゴリズムを提案する。
提案アルゴリズムは,eNodeB接続の総消費電力を削減し,合計容量を増大させる。
論文 参考訳(メタデータ) (2022-01-08T18:12:13Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - On Topology Optimization and Routing in Integrated Access and Backhaul
Networks: A Genetic Algorithm-based Approach [70.85399600288737]
IABネットワークにおけるトポロジ最適化とルーティングの問題について検討する。
我々は、IABノード配置と非IABバックホールリンク分布の両方に効率的な遺伝的アルゴリズムベースのスキームを開発する。
メッシュベースのIABネットワークを実現する上での課題について論じる。
論文 参考訳(メタデータ) (2021-02-14T21:52:05Z) - Multi-hop RIS-Empowered Terahertz Communications: A DRL-based Hybrid
Beamforming Design [39.21220050099642]
テラヘルツ帯における無線通信 (0.1-10thz) は、将来の第6世代 (6g) 無線通信システムの鍵となる技術の一つとして考えられている。
マルチホップRIS対応通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案し,THz帯域でのカバレッジ範囲を改善する。
論文 参考訳(メタデータ) (2021-01-22T14:56:28Z) - Hybrid Beamforming for RIS-Empowered Multi-hop Terahertz Communications:
A DRL-based Method [43.95403787396996]
TeraHertzバンド(0.1-10 THz)における無線通信は、将来の6世代(6G)無線通信システムにおいて重要な技術のひとつとして想定されている。
本稿では,マルチホップRIS支援通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案する。
論文 参考訳(メタデータ) (2020-09-20T07:51:49Z) - RSSI-Based Hybrid Beamforming Design with Deep Learning [4.037009782513272]
ハイブリッドビームフォーミングは、5Gミリ波通信の有望な技術である。
実践的なマルチインプットマルチアウトプットシステムでは実装が困難である。
適切な学習と関連する最適化を行うために,ディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T22:22:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。