論文の概要: Spatio-Temporal Sparsification for General Robust Graph Convolution
Networks
- arxiv url: http://arxiv.org/abs/2103.12256v1
- Date: Tue, 23 Mar 2021 02:03:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 14:09:02.950876
- Title: Spatio-Temporal Sparsification for General Robust Graph Convolution
Networks
- Title(参考訳): 汎用ロバストグラフ畳み込みネットワークのための時空間スペーシング
- Authors: Mingming Lu, Ya Zhang
- Abstract要約: グラフニューラルネットワーク(GNN)は、様々なグラフ構造データへの応用の成功により、注目を集めている。
最近の研究では、敵対攻撃がGNNの機能を脅かしていることが示されている。
本稿では,GNN隠蔽ノード表現に時空間スペーサー化(ST-Sparse)を適用して,GNNに対する敵攻撃を防御することを提案する。
- 参考スコア(独自算出の注目度): 16.579675313683627
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) have attracted increasing attention due to its
successful applications on various graph-structure data. However, recent
studies have shown that adversarial attacks are threatening the functionality
of GNNs. Although numerous works have been proposed to defend adversarial
attacks from various perspectives, most of them can be robust against the
attacks only on specific scenarios. To address this shortage of robust
generalization, we propose to defend the adversarial attacks on GNN through
applying the Spatio-Temporal sparsification (called ST-Sparse) on the GNN
hidden node representation. ST-Sparse is similar to the Dropout regularization
in spirit. Through intensive experiment evaluation with GCN as the target GNN
model, we identify the benefits of ST-Sparse as follows: (1) ST-Sparse shows
the defense performance improvement in most cases, as it can effectively
increase the robust accuracy by up to 6\% improvement; (2) ST-Sparse
illustrates its robust generalization capability by integrating with the
existing defense methods, similar to the integration of Dropout into various
deep learning models as a standard regularization technique; (3) ST-Sparse also
shows its ordinary generalization capability on clean datasets, in that
ST-SparseGCN (the integration of ST-Sparse and the original GCN) even
outperform the original GCN, while the other three representative defense
methods are inferior to the original GCN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なグラフ構造データへの応用の成功により、注目を集めている。
しかし、近年の研究では、敵対的攻撃がGNNの機能を脅かしていることが示されている。
様々な視点から敵攻撃を守るために多くの研究が提案されているが、そのほとんどは特定のシナリオでのみ攻撃に対して堅牢である。
このようなロバストな一般化の欠如に対処するために,GNN隠れノード表現に時空間スペーサー化(ST-Sparse)を適用することにより,GNNに対する敵攻撃を防御することを提案する。
st-sparse は spirit の dropout regularization に似ている。
Through intensive experiment evaluation with GCN as the target GNN model, we identify the benefits of ST-Sparse as follows: (1) ST-Sparse shows the defense performance improvement in most cases, as it can effectively increase the robust accuracy by up to 6\% improvement; (2) ST-Sparse illustrates its robust generalization capability by integrating with the existing defense methods, similar to the integration of Dropout into various deep learning models as a standard regularization technique; (3) ST-Sparse also shows its ordinary generalization capability on clean datasets, in that ST-SparseGCN (the integration of ST-Sparse and the original GCN) even outperform the original GCN, while the other three representative defense methods are inferior to the original GCN.
関連論文リスト
- HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience [50.460555688927826]
グラフニューラルネットワーク(GNN)の脆弱性に対処するグラフエージェントネットワーク(GAgN)を提案する。
GAgNはグラフ構造化エージェントネットワークであり、各ノードは1-hop-viewエージェントとして設計されている。
エージェントの限られたビューは、悪意のあるメッセージがGAgNでグローバルに伝播するのを防ぎ、グローバル最適化ベースのセカンダリアタックに抵抗する。
論文 参考訳(メタデータ) (2023-06-12T07:27:31Z) - Robust Mid-Pass Filtering Graph Convolutional Networks [47.50194731200042]
グラフ畳み込みネットワーク(GCN)は現在、グラフ構造データを扱う上で最も有望なパラダイムである。
近年の研究では、GCNは敵の攻撃に弱いことが示されている。
そこで我々は,これらの課題を克服するために,シンプルで効果的なミッドパスフィルタGCN(Mid-GCN)を提案する。
論文 参考訳(メタデータ) (2023-02-16T03:07:09Z) - GUARD: Graph Universal Adversarial Defense [54.81496179947696]
GUARD(Graph Universal Adversarial Defense)という,シンプルで効果的な手法を提案する。
GUARDは、各ノードを共通の防御パッチで攻撃から保護する。
GUARDは、複数の敵攻撃に対する複数の確立されたGCNの堅牢性を大幅に改善し、最先端の防御手法を大きなマージンで上回る。
論文 参考訳(メタデータ) (2022-04-20T22:18:12Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
敵の訓練は、敵の攻撃に対するモデルの堅牢性を改善するために広く実証されてきた。
グラフ解析問題におけるGNNの一般化能力をどのように改善するかは、まだ不明である。
我々は、重みと特徴量の観点から共振器摂動(CAP)最適化問題を構築し、重みと特徴の損失を交互に平らにする交互対振器摂動アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-28T02:28:13Z) - Robustness of Graph Neural Networks at Scale [63.45769413975601]
我々は,グラフニューラルネットワーク(GNN)を大規模に攻撃し,防御する方法を研究する。
効率のよい表現を維持するために,2つのスパシティ対応一階最適化攻撃を提案する。
GNNに対する世界的な攻撃には、一般的なサロゲート損失が適していないことを示す。
論文 参考訳(メタデータ) (2021-10-26T21:31:17Z) - Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning
Attacks [43.60973654460398]
グラフニューラルネットワーク(GNN)は、ニューラルネットワークからグラフ構造化データへの一般化である。
GNNは敵の攻撃に弱い、すなわち、構造に対する小さな摂動は、非自明な性能劣化を引き起こす可能性がある。
本稿では,GNNモデルの堅牢性向上を目的とした不確実性マッチングGNN(UM-GNN)を提案する。
論文 参考訳(メタデータ) (2020-09-30T05:29:42Z) - GNNGuard: Defending Graph Neural Networks against Adversarial Attacks [16.941548115261433]
我々はGNNGuardを開発した。GNNGuardは、離散グラフ構造を乱す様々な訓練時間攻撃に対して防御するアルゴリズムである。
GNNGuardは、関連のないノード間のエッジを切断しながら、類似ノードを接続するエッジにより高い重みを割り当てる方法を学ぶ。
実験の結果、GNNGuardは既存の防衛アプローチを平均15.3%上回る結果となった。
論文 参考訳(メタデータ) (2020-06-15T06:07:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。