論文の概要: Hallucination of speech recognition errors with sequence to sequence
learning
- arxiv url: http://arxiv.org/abs/2103.12258v2
- Date: Thu, 25 Mar 2021 16:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 11:01:51.668749
- Title: Hallucination of speech recognition errors with sequence to sequence
learning
- Title(参考訳): シーケンス学習による音声認識誤りの幻覚
- Authors: Prashant Serai and Vishal Sunder and Eric Fosler-Lussier
- Abstract要約: プレーンテキストデータを使用して話し言葉理解やASRのためのシステムのトレーニングを行う場合、証明された戦略は、ASR出力が金の転写を与えるであろうものを幻覚することです。
本稿では,asr語列の幻覚的出力,入力語列の条件づけ,対応する音素列を直接予測する新しいエンドツーエンドモデルを提案する。
これにより、ドメイン内ASRシステムの未確認データの転写からのエラーのリコール、およびドメイン外ASRシステムの非関連タスクからのオーディオの転写の以前の結果が改善されます。
- 参考スコア(独自算出の注目度): 16.39332236910586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic Speech Recognition (ASR) is an imperfect process that results in
certain mismatches in ASR output text when compared to plain written text or
transcriptions. When plain text data is to be used to train systems for spoken
language understanding or ASR, a proven strategy to reduce said mismatch and
prevent degradations, is to hallucinate what the ASR outputs would be given a
gold transcription. Prior work in this domain has focused on modeling errors at
the phonetic level, while using a lexicon to convert the phones to words,
usually accompanied by an FST Language model. We present novel end-to-end
models to directly predict hallucinated ASR word sequence outputs, conditioning
on an input word sequence as well as a corresponding phoneme sequence. This
improves prior published results for recall of errors from an in-domain ASR
system's transcription of unseen data, as well as an out-of-domain ASR system's
transcriptions of audio from an unrelated task, while additionally exploring an
in-between scenario when limited characterization data from the test ASR system
is obtainable. To verify the extrinsic validity of the method, we also use our
hallucinated ASR errors to augment training for a spoken question classifier,
finding that they enable robustness to real ASR errors in a downstream task,
when scarce or even zero task-specific audio was available at train-time.
- Abstract(参考訳): 自動音声認識 (Automatic Speech Recognition, ASR) は、プレーンテキストや文字起こしと比較して、ASR出力テキストのミスマッチを生じる不完全なプロセスである。
平易なテキストデータが音声言語理解システム(ASR)の訓練に使用される場合、そのミスマッチを減らし劣化を防ぐための実証された戦略は、ASRの出力に金の転写を与えることを幻覚させることである。
このドメインでの以前の作業は、音韻レベルでのエラーのモデル化に重点を置いており、レキシコンを使用して携帯電話を単語に変換する。
本稿では,asr語列の幻覚的出力,入力語列の条件づけ,対応する音素列を直接予測する新しいエンドツーエンドモデルを提案する。
これにより、ドメイン内ASRシステムの未確認データの書き起こしによるエラーのリコールや、非関連タスクからのドメイン外ASRシステムのオーディオの書き起こしから、さらにテストASRシステムからの限られた特徴データが取得可能な場合の中間シナリオを探索する。
また,本手法の非本質的妥当性を検証するため,音声質問分類器の訓練に幻覚的ASR誤りを用いることで,列車時間帯にタスク固有の音声が不足あるいはゼロであった場合に,下流タスクにおける実際のASR誤りに対してロバスト性を実現することを確認した。
関連論文リスト
- Towards interfacing large language models with ASR systems using confidence measures and prompting [54.39667883394458]
本研究では,大言語モデル(LLM)を用いたASRテキストのポストホック修正について検討する。
精度の高い転写文に誤りを導入することを避けるため,信頼度に基づくフィルタリング手法を提案する。
その結果,競争力の低いASRシステムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-07-31T08:00:41Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - Error Correction in ASR using Sequence-to-Sequence Models [32.41875780785648]
自動音声認識における後編集では、ASRシステムによって生成された共通および系統的な誤りを自動的に修正する必要がある。
本稿では,事前学習型シーケンス・ツー・シーケンス・モデルであるBARTを用いて,デノナイジングモデルとして機能することを提案する。
アクセント付き音声データによる実験結果から,ASRの誤りを効果的に修正できることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T17:32:59Z) - Attention-based Multi-hypothesis Fusion for Speech Summarization [83.04957603852571]
音声認識(ASR)とテキスト要約(TS)を組み合わせることで、音声要約を実現することができる
ASR誤差はカスケード法における出力要約の品質に直接影響する。
本稿では、ASRの誤りに対して頑健なカスケード音声要約モデルを提案し、ASRが生成した複数の仮説を利用して、ASRの誤りが要約に与える影響を緩和する。
論文 参考訳(メタデータ) (2021-11-16T03:00:29Z) - Improving Distinction between ASR Errors and Speech Disfluencies with
Feature Space Interpolation [0.0]
微調整事前訓練言語モデル(LM)は,後処理における自動音声認識(ASR)エラー検出において一般的な手法である。
本稿では,既存のLMベースのASR誤り検出システムの改良手法を提案する。
論文 参考訳(メタデータ) (2021-08-04T02:11:37Z) - FastCorrect: Fast Error Correction with Edit Alignment for Automatic
Speech Recognition [90.34177266618143]
編集アライメントに基づく新しいNAR誤り訂正モデルであるFastCorrectを提案する。
fastcorrectは推論を6-9倍高速化し、自己回帰補正モデルと比較して精度を8-14%向上させる。
ニューラルマシン翻訳で採用されている一般的なNARモデルの精度を、大きなマージンで上回っています。
論文 参考訳(メタデータ) (2021-05-09T05:35:36Z) - Advanced Long-context End-to-end Speech Recognition Using
Context-expanded Transformers [56.56220390953412]
コンフォーメータアーキテクチャを導入することで、精度をさらに向上させ、以前の作業を拡張します。
拡張トランスフォーマーは、最先端のエンドツーエンドのASR性能を提供する。
論文 参考訳(メタデータ) (2021-04-19T16:18:00Z) - An Approach to Improve Robustness of NLP Systems against ASR Errors [39.57253455717825]
音声対応システムは通常、音声を自動音声認識モデルを介してテキストに変換し、テキストを下流の自然言語処理モジュールに供給します。
ASRシステムのエラーは、NLPモジュールの性能を著しく低下させる可能性がある。
これまでの研究では、トレーニングプロセス中にasrノイズを注入することにより、この問題を解決するためにデータ拡張手法を用いることが有効であることが示されている。
論文 参考訳(メタデータ) (2021-03-25T05:15:43Z) - Adapting End-to-End Speech Recognition for Readable Subtitles [15.525314212209562]
サブタイリングのようないくつかのユースケースでは、画面サイズや読み込み時間に制限があるため、動詞の文字起こしは出力の可読性を低下させる。
まず,教師なし圧縮モデルを用いて書き起こされた音声を後編集するカスケードシステムについて検討する。
実験により、モデルをスクラッチからトレーニングするために必要なデータよりもはるかに少ないデータで、TransformerベースのASRモデルを適用して、書き起こし機能と圧縮機能の両方を組み込むことが可能であることが示されている。
論文 参考訳(メタデータ) (2020-05-25T14:42:26Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。