Deep Implicit Moving Least-Squares Functions for 3D Reconstruction
- URL: http://arxiv.org/abs/2103.12266v1
- Date: Tue, 23 Mar 2021 02:26:07 GMT
- Title: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction
- Authors: Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang
Liu
- Abstract summary: In this work, we turn the discrete point sets into smooth surfaces by introducing the well-known implicit moving least-squares (IMLS) surface formulation.
We incorporate IMLS surface generation into deep neural networks for inheriting both the flexibility of point sets and the high quality of implicit surfaces.
Our experiments on 3D object reconstruction demonstrate that IMLSNets outperform state-of-the-art learning-based methods in terms of reconstruction quality and computational efficiency.
- Score: 23.8586965588835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point set is a flexible and lightweight representation widely used for 3D
deep learning. However, their discrete nature prevents them from representing
continuous and fine geometry, posing a major issue for learning-based shape
generation. In this work, we turn the discrete point sets into smooth surfaces
by introducing the well-known implicit moving least-squares (IMLS) surface
formulation, which naturally defines locally implicit functions on point sets.
We incorporate IMLS surface generation into deep neural networks for inheriting
both the flexibility of point sets and the high quality of implicit surfaces.
Our IMLSNet predicts an octree structure as a scaffold for generating MLS
points where needed and characterizes shape geometry with learned local priors.
Furthermore, our implicit function evaluation is independent of the neural
network once the MLS points are predicted, thus enabling fast runtime
evaluation. Our experiments on 3D object reconstruction demonstrate that
IMLSNets outperform state-of-the-art learning-based methods in terms of
reconstruction quality and computational efficiency. Extensive ablation tests
also validate our network design and loss functions.
Related papers
- Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - SurFit: Learning to Fit Surfaces Improves Few Shot Learning on Point
Clouds [48.61222927399794]
SurFit is a simple approach for label efficient learning of 3D shape segmentation networks.
It is based on a self-supervised task of decomposing the surface of a 3D shape into geometric primitives.
arXiv Detail & Related papers (2021-12-27T23:55:36Z) - Learning Modified Indicator Functions for Surface Reconstruction [10.413340575612233]
We propose a learning-based approach for implicit surface reconstruction from raw point clouds without normals.
Our method is inspired by Gauss Lemma in potential energy theory, which gives an explicit integral formula for the indicator functions.
We design a novel deep neural network to perform surface integral and learn the modified indicator functions from un-oriented and noisy point clouds.
arXiv Detail & Related papers (2021-11-18T05:30:35Z) - Shape As Points: A Differentiable Poisson Solver [118.12466580918172]
In this paper, we introduce a differentiable point-to-mesh layer using a differentiable formulation of Poisson Surface Reconstruction (PSR)
The differentiable PSR layer allows us to efficiently and differentiably bridge the explicit 3D point representation with the 3D mesh via the implicit indicator field.
Compared to neural implicit representations, our Shape-As-Points (SAP) model is more interpretable, lightweight, and accelerates inference time by one order of magnitude.
arXiv Detail & Related papers (2021-06-07T09:28:38Z) - Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible
Neural Networks [118.20778308823779]
We present a novel 3D primitive representation that defines primitives using an Invertible Neural Network (INN)
Our model learns to parse 3D objects into semantically consistent part arrangements without any part-level supervision.
arXiv Detail & Related papers (2021-03-18T17:59:31Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
We introduce RfD-Net that jointly detects and reconstructs dense object surfaces directly from point clouds.
We decouple the instance reconstruction into global object localization and local shape prediction.
Our approach consistently outperforms the state-of-the-arts and improves over 11 of mesh IoU in object reconstruction.
arXiv Detail & Related papers (2020-11-30T12:58:05Z) - Learning Occupancy Function from Point Clouds for Surface Reconstruction [6.85316573653194]
Implicit function based surface reconstruction has been studied for a long time to recover 3D shapes from point clouds sampled from surfaces.
This paper proposes a novel method for learning occupancy functions from sparse point clouds and achieves better performance on challenging surface reconstruction tasks.
arXiv Detail & Related papers (2020-10-22T02:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.