論文の概要: Conditional Training with Bounding Map for Universal Lesion Detection
- arxiv url: http://arxiv.org/abs/2103.12277v1
- Date: Tue, 23 Mar 2021 03:04:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 14:10:49.362118
- Title: Conditional Training with Bounding Map for Universal Lesion Detection
- Title(参考訳): ユニバーサル病変検出のための境界マップを用いた条件付きトレーニング
- Authors: Han Li, Long Chen, Hu Han, S. Kevin Zhou
- Abstract要約: CTにおけるユニバーサル病変検出は、コンピュータ診断に不可欠な役割を担います。
2段階のULD法はまだ正対の不均衡のような問題に苦しんでいます。
オブジェクト提案中の負のアンカー。
負アンカーの不均衡を低減できる2段階uddのためのbmに基づく条件訓練を提案する。
- 参考スコア(独自算出の注目度): 33.24904644311758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal Lesion Detection (ULD) in computed tomography plays an essential
role in computer-aided diagnosis. Promising ULD results have been reported by
coarse-to-fine two-stage detection approaches, but such two-stage ULD methods
still suffer from issues like imbalance of positive v.s. negative anchors
during object proposal and insufficient supervision problem during localization
regression and classification of the region of interest (RoI) proposals. While
leveraging pseudo segmentation masks such as bounding map (BM) can reduce the
above issues to some degree, it is still an open problem to effectively handle
the diverse lesion shapes and sizes in ULD. In this paper, we propose a
BM-based conditional training for two-stage ULD, which can (i) reduce positive
vs. negative anchor imbalance via BM-based conditioning (BMC) mechanism for
anchor sampling instead of traditional IoU-based rule; and (ii) adaptively
compute size-adaptive BM (ABM) from lesion bounding box, which is used for
improving lesion localization accuracy via ABMsupervised segmentation.
Experiments with four state-of-the-art methods show that the proposed approach
can bring an almost free detection accuracy improvement without requiring
expensive lesion mask annotations.
- Abstract(参考訳): コンピュータ断層撮影におけるユニバーサル病変検出(ULD)は,コンピュータ支援診断において重要な役割を担っている。
ULDの結果は粗大な2段階検出法によって報告されているが、これらの2段階検出法は正の対価の不均衡などの問題に悩まされている。
対象提案中の負のアンカーと、ローカライゼーション回帰および関心領域(RoI)提案の分類における不十分な監督問題。
有界マップ(BM)のような擬似セグメンテーションマスクを利用することで、上記の問題をある程度低減することができるが、UDDの多様な病変形状や大きさを効果的に扱うことは未解決の問題である。
本稿では,従来のiouに基づく規則に代えてアンカーサンプリングを行うbm-based conditioning (bmc) 機構を用いて,負のアンカー不均衡を低減できる2段階uddに対するbm-based conditional trainingを提案する。
最新の4つの手法を用いた実験により,提案手法は,病変マスクのアノテーションを必要とせず,ほぼ無償で検出精度を向上できることが示された。
関連論文リスト
- Semi-Supervised Bone Marrow Lesion Detection from Knee MRI Segmentation Using Mask Inpainting Models [7.197545510697077]
骨髄病変(BML)は膝関節症(OA)の重要な指標である
MRIにおけるBMLの効果的な検出は、OAの診断と治療に不可欠である。
本稿では,高分解能膝関節MRIにおけるBML識別のためのマスク塗装モデルを用いた半教師付き局所異常検出法を提案する。
論文 参考訳(メタデータ) (2024-09-27T23:47:47Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
本稿では,マスセグメンテーションのための半弱教師付き学習フレームワークを提案する。
良好な性能を得るために, 限られた強ラベルのサンプルと十分な弱ラベルのサンプルを用いる。
CBIS-DDSMおよびINbreastデータセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T12:05:25Z) - Semi-weakly-supervised neural network training for medical image
registration [18.520388065729552]
本稿では,モデル性能を向上させる半弱制御型登録パイプラインについて述べる。
本稿では,ネットワーク重みの摂動と画像再サンプリングによる2種類の拡張手法について検討する。
589人の男性骨盤MRI画像に8つの解剖学的ROIをラベル付けした実験は、登録性能の向上を示す。
論文 参考訳(メタデータ) (2024-02-16T14:44:40Z) - Likelihood-Aware Semantic Alignment for Full-Spectrum
Out-of-Distribution Detection [24.145060992747077]
画像とテキストの対応を意味的に高次領域に促進する「Likelihood-Aware Semantic Alignment (LSA)フレームワーク」を提案する。
2つのF-OODベンチマークで15.26%$と18.88%$の差で既存の手法を上回り、提案したLSAの優れたOOD検出性能を実証した。
論文 参考訳(メタデータ) (2023-12-04T08:53:59Z) - Self-Supervised Equivariant Regularization Reconciles Multiple Instance
Learning: Joint Referable Diabetic Retinopathy Classification and Lesion
Segmentation [3.1671604920729224]
病変の出現は、糖尿病網膜症(rDR)と非参照性DRを区別する重要な手がかりである。
既存の大規模DRデータセットの多くは、ピクセルベースのアノテーションではなく、画像レベルのラベルのみを含む。
本稿では,自己教師付き同変学習と注目型マルチインスタンス学習を活用し,この問題に対処する。
我々はEyepacsデータセット上で広範囲な検証実験を行い、0.958の受信器動作特性曲線(AU ROC)の領域を達成し、現在の最先端アルゴリズムより優れている。
論文 参考訳(メタデータ) (2022-10-12T06:26:05Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Uncertainty Estimation in Medical Image Localization: Towards Robust
Anterior Thalamus Targeting for Deep Brain Stimulation [11.910765921234333]
本稿では,2段階の深層学習(DL)フレームワークを提案する。
第1段階は、脳MRI全体から視床領域を特定して収穫する。
第2段階は、最も微細な解像度スケールで目標をローカライズするために、収穫された体積に対してボクセル単位の回帰を行う。
論文 参考訳(メタデータ) (2020-11-03T23:43:52Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。