論文の概要: Gradient Regularized Contrastive Learning for Continual Domain
Adaptation
- arxiv url: http://arxiv.org/abs/2103.12294v1
- Date: Tue, 23 Mar 2021 04:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 13:55:35.774677
- Title: Gradient Regularized Contrastive Learning for Continual Domain
Adaptation
- Title(参考訳): 連続領域適応のための勾配正規化コントラスト学習
- Authors: Shixiang Tang, Peng Su, Dapeng Chen and Wanli Ouyang
- Abstract要約: 本稿では,ラベル付きソースドメインと非ラベル付きターゲットドメインのシーケンスでモデルを提示する連続的なドメイン適応の問題について検討する。
障害を解決するため,グラディエント正規化コントラスト学習(GRCL)を提案する。
Digits、DomainNet、Office-Caltechベンチマークの実験は、我々のアプローチの強力なパフォーマンスを示しています。
- 参考スコア(独自算出の注目度): 86.02012896014095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human beings can quickly adapt to environmental changes by leveraging
learning experience. However, adapting deep neural networks to dynamic
environments by machine learning algorithms remains a challenge. To better
understand this issue, we study the problem of continual domain adaptation,
where the model is presented with a labelled source domain and a sequence of
unlabelled target domains. The obstacles in this problem are both domain shift
and catastrophic forgetting. We propose Gradient Regularized Contrastive
Learning (GRCL) to solve the obstacles. At the core of our method, gradient
regularization plays two key roles: (1) enforcing the gradient not to harm the
discriminative ability of source features which can, in turn, benefit the
adaptation ability of the model to target domains; (2) constraining the
gradient not to increase the classification loss on old target domains, which
enables the model to preserve the performance on old target domains when
adapting to an in-coming target domain. Experiments on Digits, DomainNet and
Office-Caltech benchmarks demonstrate the strong performance of our approach
when compared to the other state-of-the-art methods.
- Abstract(参考訳): 人間は学習経験を生かして環境変化に迅速に適応することができる。
しかし、機械学習アルゴリズムによるディープニューラルネットワークの動的環境への適応は依然として課題である。
この問題をより深く理解するために,モデルはラベル付きソースドメインとラベルなしターゲットドメインのシーケンスで表現される,連続的ドメイン適応の問題について検討する。
この問題の障害は、ドメインシフトと破滅的な忘れ物の両方である。
障害を解決するため,グラディエント正規化コントラスト学習(GRCL)を提案する。
本手法のコアとなるのは,(1)対象領域に対するモデルの適応性を向上できるソース特徴の識別能力を損なうことなく勾配を強制すること,(2)対象ドメインに対する分類損失を増大させないよう勾配を拘束すること,という2つの重要な役割を担っている。
Digits、DomainNet、Office-Caltechベンチマークの実験は、他の最先端の手法と比較して、我々のアプローチの強いパフォーマンスを示している。
関連論文リスト
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
教師なしドメイン適応セグメンテーションは、それらのドメインのラベル付きデータに頼ることなく、ターゲットドメイン上のモデルのセグメンテーション精度を向上させることを目的としている。
ソースドメイン(ラベル付きデータが利用可能な場所)とターゲットドメイン(ラベルなしデータのみが存在する場所)の特徴表現の整合を図る。
論文 参考訳(メタデータ) (2024-07-24T08:53:29Z) - Progressive Conservative Adaptation for Evolving Target Domains [76.9274842289221]
従来のドメイン適応は、典型的には、ソースドメインから定常ターゲットドメインに知識を転送する。
このような対象データに対する復元と適応は、時間とともに計算とリソース消費をエスカレートする。
我々は、進歩的保守的適応(PCAda)と呼ばれる、単純で効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-07T04:11:25Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
我々はtextbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA) と呼ばれるドメイン適応のための2段階モデルを提案する。
逆成分はドメインレベルのアライメントを促進するが、2段階のコントラスト学習はクラス情報を利用してドメイン間の高いクラス内コンパクト性を実現する。
論文 参考訳(メタデータ) (2023-01-10T07:43:21Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
ドメインシフトを軽減するために、クロスドメインレグレッタを学ぶことが不可欠です。
本稿では、より効果的なドメイン間回帰モデルを求めるために、ABRNet(Adversarial Bi-Regressor Network)を提案する。
論文 参考訳(メタデータ) (2022-09-20T18:38:28Z) - Domain Adaptation for Object Detection using SE Adaptors and Center Loss [0.0]
本稿では,高速RCNNに基づく教師なしドメイン適応手法を導入し,ドメインシフトによる性能低下を防止する。
また、SEアダプタと呼ばれる圧縮励起機構を利用して、ドメインの注意を向上するアダプティブレイヤのファミリーも導入する。
最後に、インスタンスと画像レベルの表現に中心損失を組み込んで、クラス内分散を改善する。
論文 参考訳(メタデータ) (2022-05-25T17:18:31Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Gradient Regularized Contrastive Learning for Continual Domain
Adaptation [26.21464286134764]
本研究では、ラベル付きソースドメインとラベルなしターゲットドメインのシーケンスをモデルに提示する連続的なドメイン適応の問題について検討する。
本研究では,これらの障害を解決するために,グラディエント正規化コントラスト学習を提案する。
本手法は,ラベル付きソースドメインとラベル付きターゲットドメインを併用することにより,意味的識別性とドメイン不変性の両方を共同で学習することができる。
論文 参考訳(メタデータ) (2020-07-25T14:30:03Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
本稿では,フォワード・バック・サイクリック(FBC)トレーニングによる物体検出のための教師なし領域適応手法を提案する。
近年, 対角訓練に基づく領域適応法は, 限界特徴分布アライメントによる領域差最小化に有効であることが示された。
本稿では,後方ホッピングによるソースからターゲットへの適応と,前方通過によるターゲットからソースへの適応を反復的に計算するフォワード・バック・サイクル適応を提案する。
論文 参考訳(メタデータ) (2020-02-03T06:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。