論文の概要: Are Neural Language Models Good Plagiarists? A Benchmark for Neural
Paraphrase Detection
- arxiv url: http://arxiv.org/abs/2103.12450v1
- Date: Tue, 23 Mar 2021 11:01:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-24 22:19:53.964907
- Title: Are Neural Language Models Good Plagiarists? A Benchmark for Neural
Paraphrase Detection
- Title(参考訳): ニューラルネットワークモデルは優れたプラジャリストか?
ニューラルパラフレーズ検出のためのベンチマーク
- Authors: Jan Philip Wahle, Terry Ruas, Norman Meuschke, Bela Gipp
- Abstract要約: トランスフォーマーアーキテクチャに基づく最近の言語モデルを用いたパラフレーズ記事からなるベンチマークを提案する。
我々の貢献は、パラフレーズ検出システムに関する将来的な研究を後押しし、大量の原文およびパラフレーズ文書のコレクションを提供する。
- 参考スコア(独自算出の注目度): 5.847824494580938
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The rise of language models such as BERT allows for high-quality text
paraphrasing. This is a problem to academic integrity, as it is difficult to
differentiate between original and machine-generated content. We propose a
benchmark consisting of paraphrased articles using recent language models
relying on the Transformer architecture. Our contribution fosters future
research of paraphrase detection systems as it offers a large collection of
aligned original and paraphrased documents, a study regarding its structure,
classification experiments with state-of-the-art systems, and we make our
findings publicly available.
- Abstract(参考訳): BERTのような言語モデルの台頭は、高品質なテキストパラフレーズを可能にする。
これは、オリジナルコンテンツとマシン生成コンテンツの区別が難しいため、学術的整合性の問題である。
本稿では,Transformerアーキテクチャに依存する最近の言語モデルを用いて,パラフレーズ付き記事からなるベンチマークを提案する。
本研究は,従来の文書とパラフレーズの集合,その構造,最先端システムを用いた分類実験,そしてその成果を公開することによって,パラフレーズ検出システムの将来的な研究を促進するものである。
関連論文リスト
- Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - ATLANTIC: Structure-Aware Retrieval-Augmented Language Model for
Interdisciplinary Science [0.0]
大きな言語モデルは、多くの自然言語処理タスクで印象的なパフォーマンスを記録します。
Retrieval augmentationは、外部の知識ソースからコンテキストを取得することで、効果的なソリューションを提供する。
本稿では,検索強化時に文書構造に対応する構造対応検索言語モデルを提案する。
論文 参考訳(メタデータ) (2023-11-21T02:02:46Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - Paraphrase Identification with Deep Learning: A Review of Datasets and Methods [1.4325734372991794]
一般的なデータセットにおける特定のパラフレーズ型の表現不足が,盗作を検知する能力にどのように影響するかを検討する。
パラフレーズのための新しいタイポロジーを導入し、検証する。
我々は、AIに基づくパラフレーズ検出を強化するために、将来の研究とデータセット開発のための新しい方向を提案する。
論文 参考訳(メタデータ) (2022-12-13T23:06:20Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - Continuous Offline Handwriting Recognition using Deep Learning Models [0.0]
手書き文字認識は、自動文書画像解析の分野に大きな関心を持つオープンな問題である。
我々は,畳み込みニューラルネットワーク(CNN)とシーケンス・ツー・シーケンス(seq2seq)という,2種類のディープラーニングアーキテクチャの統合に基づく新しい認識モデルを提案する。
提案した新たなモデルでは,他の確立された方法論と競合する結果が得られる。
論文 参考訳(メタデータ) (2021-12-26T07:31:03Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
現在の言語モデルは高品質なテキストを生成することができる。
彼らは、これまで見たテキストを単にコピーしているか、それとも一般化可能な言語的抽象化を学んだのか?
本稿では、生成したテキストの新規性を評価するための分析スイートであるRAVENを紹介する。
論文 参考訳(メタデータ) (2021-11-18T04:07:09Z) - Neural Deepfake Detection with Factual Structure of Text [78.30080218908849]
テキストのディープフェイク検出のためのグラフベースモデルを提案する。
我々のアプローチは、ある文書の事実構造をエンティティグラフとして表現する。
本モデルでは,機械生成テキストと人文テキストの事実構造の違いを識別することができる。
論文 参考訳(メタデータ) (2020-10-15T02:35:31Z) - Russian Natural Language Generation: Creation of a Language Modelling
Dataset and Evaluation with Modern Neural Architectures [0.0]
ロシア語モデリングのための新しい参照データセットを提供する。
我々は、テキスト生成、すなわち変分オートエンコーダ、および生成的敵ネットワークのための一般的なモダンな手法を実験した。
我々は, 難易度, 文法的正しさ, 語彙的多様性などの指標について, 生成したテキストを評価する。
論文 参考訳(メタデータ) (2020-05-05T20:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。