Incrementally Zero-Shot Detection by an Extreme Value Analyzer
- URL: http://arxiv.org/abs/2103.12609v1
- Date: Tue, 23 Mar 2021 15:06:30 GMT
- Title: Incrementally Zero-Shot Detection by an Extreme Value Analyzer
- Authors: Zheng Sixiao and Fu Yanwei and Hou Yanxi
- Abstract summary: This paper introduces a novel strategy for both zero-shot learning and class-incremental learning in real-world object detection.
We propose a novel extreme value analyzer to detect objects from old seen, new seen, and unseen classes, simultaneously.
Experiments demonstrate the efficacy of our model in detecting objects from both the seen and unseen classes, outperforming the alternative models on Pascal VOC and MSCOCO datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human beings not only have the ability to recognize novel unseen classes, but
also can incrementally incorporate the new classes to existing knowledge
preserved. However, zero-shot learning models assume that all seen classes
should be known beforehand, while incremental learning models cannot recognize
unseen classes. This paper introduces a novel and challenging task of
Incrementally Zero-Shot Detection (IZSD), a practical strategy for both
zero-shot learning and class-incremental learning in real-world object
detection. An innovative end-to-end model -- IZSD-EVer was proposed to tackle
this task that requires incrementally detecting new classes and detecting the
classes that have never been seen. Specifically, we propose a novel extreme
value analyzer to detect objects from old seen, new seen, and unseen classes,
simultaneously. Additionally and technically, we propose two innovative losses,
i.e., background-foreground mean squared error loss alleviating the extreme
imbalance of the background and foreground of images, and projection distance
loss aligning the visual space and semantic spaces of old seen classes.
Experiments demonstrate the efficacy of our model in detecting objects from
both the seen and unseen classes, outperforming the alternative models on
Pascal VOC and MSCOCO datasets.
Related papers
- Resolving Semantic Confusions for Improved Zero-Shot Detection [6.72910827751713]
We propose a generative model incorporating a triplet loss that acknowledges the degree of dissimilarity between classes.
A cyclic-consistency loss is also enforced to ensure that generated visual samples of a class highly correspond to their own semantics.
arXiv Detail & Related papers (2022-12-12T18:11:48Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Static-Dynamic Co-Teaching for Class-Incremental 3D Object Detection [71.18882803642526]
Deep learning approaches have shown remarkable performance in the 3D object detection task.
They suffer from a catastrophic performance drop when incrementally learning new classes without revisiting the old data.
This "catastrophic forgetting" phenomenon impedes the deployment of 3D object detection approaches in real-world scenarios.
We present the first solution - SDCoT, a novel static-dynamic co-teaching method.
arXiv Detail & Related papers (2021-12-14T09:03:41Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Towards Generalized and Incremental Few-Shot Object Detection [9.033533653482529]
A novel Incremental Few-Shot Object Detection (iFSOD) method is proposed to enable the effective continual learning from few-shot samples.
Specifically, a Double-Branch Framework (DBF) is proposed to decouple the feature representation of base and novel (few-shot) class.
We conduct experiments on both Pascal VOC and MS-COCO, which demonstrate that our method can effectively solve the problem of incremental few-shot detection.
arXiv Detail & Related papers (2021-09-23T12:38:09Z) - Multi-View Correlation Distillation for Incremental Object Detection [12.536640582318949]
We propose a novel textbfMulti-textbfView textbfCorrelation textbfDistillation (MVCD) based incremental object detection method.
arXiv Detail & Related papers (2021-07-05T04:36:33Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
We propose a novel incremental object detector based on Faster R-CNN to continuously learn from new object classes without using old data.
It is a triple network where an old model and a residual model as assistants for helping the incremental model learning on new classes without forgetting the previous learned knowledge.
arXiv Detail & Related papers (2020-07-27T11:04:57Z) - Any-Shot Object Detection [81.88153407655334]
'Any-shot detection' is where totally unseen and few-shot categories can simultaneously co-occur during inference.
We propose a unified any-shot detection model, that can concurrently learn to detect both zero-shot and few-shot object classes.
Our framework can also be used solely for Zero-shot detection and Few-shot detection tasks.
arXiv Detail & Related papers (2020-03-16T03:43:15Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEt is a detector for incrementally learning to detect class objects with few examples.
ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples.
arXiv Detail & Related papers (2020-03-10T12:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.