Incremental Few-Shot Object Detection
- URL: http://arxiv.org/abs/2003.04668v2
- Date: Thu, 12 Mar 2020 20:58:07 GMT
- Title: Incremental Few-Shot Object Detection
- Authors: Juan-Manuel Perez-Rua and Xiatian Zhu and Timothy Hospedales and Tao
Xiang
- Abstract summary: OpeN-ended Centre nEt is a detector for incrementally learning to detect class objects with few examples.
ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples.
- Score: 96.02543873402813
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most existing object detection methods rely on the availability of abundant
labelled training samples per class and offline model training in a batch mode.
These requirements substantially limit their scalability to open-ended
accommodation of novel classes with limited labelled training data. We present
a study aiming to go beyond these limitations by considering the Incremental
Few-Shot Detection (iFSD) problem setting, where new classes must be registered
incrementally (without revisiting base classes) and with few examples. To this
end we propose OpeN-ended Centre nEt (ONCE), a detector designed for
incrementally learning to detect novel class objects with few examples. This is
achieved by an elegant adaptation of the CentreNet detector to the few-shot
learning scenario, and meta-learning a class-specific code generator model for
registering novel classes. ONCE fully respects the incremental learning
paradigm, with novel class registration requiring only a single forward pass of
few-shot training samples, and no access to base classes -- thus making it
suitable for deployment on embedded devices. Extensive experiments conducted on
both the standard object detection and fashion landmark detection tasks show
the feasibility of iFSD for the first time, opening an interesting and very
important line of research.
Related papers
- InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images.
We introduce a pioneering fine-tuning-based technique, termed InfRS, designed to facilitate the incremental learning of novel classes.
We develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem.
arXiv Detail & Related papers (2024-05-18T13:39:50Z) - Scaling Novel Object Detection with Weakly Supervised Detection
Transformers [21.219817483091166]
We propose the Weakly Supervised Detection Transformer, which enables efficient knowledge transfer from a large-scale pretraining dataset to WSOD finetuning.
Our experiments show that our approach outperforms previous state-of-the-art models on large-scale novel object detection datasets.
arXiv Detail & Related papers (2022-07-11T21:45:54Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Towards Generalized and Incremental Few-Shot Object Detection [9.033533653482529]
A novel Incremental Few-Shot Object Detection (iFSOD) method is proposed to enable the effective continual learning from few-shot samples.
Specifically, a Double-Branch Framework (DBF) is proposed to decouple the feature representation of base and novel (few-shot) class.
We conduct experiments on both Pascal VOC and MS-COCO, which demonstrate that our method can effectively solve the problem of incremental few-shot detection.
arXiv Detail & Related papers (2021-09-23T12:38:09Z) - Meta Faster R-CNN: Towards Accurate Few-Shot Object Detection with
Attentive Feature Alignment [33.446875089255876]
Few-shot object detection (FSOD) aims to detect objects using only few examples.
We propose a meta-learning based few-shot object detection method by transferring meta-knowledge learned from data-abundant base classes to data-scarce novel classes.
arXiv Detail & Related papers (2021-04-15T19:01:27Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Any-Shot Object Detection [81.88153407655334]
'Any-shot detection' is where totally unseen and few-shot categories can simultaneously co-occur during inference.
We propose a unified any-shot detection model, that can concurrently learn to detect both zero-shot and few-shot object classes.
Our framework can also be used solely for Zero-shot detection and Few-shot detection tasks.
arXiv Detail & Related papers (2020-03-16T03:43:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.