論文の概要: Neural Architecture Search From Fr\'echet Task Distance
- arxiv url: http://arxiv.org/abs/2103.12827v2
- Date: Thu, 25 Mar 2021 14:13:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 11:27:13.185194
- Title: Neural Architecture Search From Fr\'echet Task Distance
- Title(参考訳): Fr'echetタスク距離によるニューラルアーキテクチャ検索
- Authors: Cat P. Le, Mohammadreza Soltani, Robert Ravier, Trevor Standley,
Silvio Savarese, Vahid Tarokh
- Abstract要約: 与えられたベースラインタスクのセット内の対象タスクと各タスクの間の距離を、ターゲットタスクのニューラルネットワークアーキテクチャ検索スペースを減らすためにどのように使用できるかを示す。
タスク固有のアーキテクチャに対する検索空間の複雑さの低減は、このサイド情報を用いることなく完全な検索を行う代わりに、類似したタスクのために最適化されたアーキテクチャ上に構築することで達成される。
- 参考スコア(独自算出の注目度): 50.9995960884133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate a Fr\'echet-type asymmetric distance between tasks based on
Fisher Information Matrices. We show how the distance between a target task and
each task in a given set of baseline tasks can be used to reduce the neural
architecture search space for the target task. The complexity reduction in
search space for task-specific architectures is achieved by building on the
optimized architectures for similar tasks instead of doing a full search
without using this side information. Experimental results demonstrate the
efficacy of the proposed approach and its improvements over the
state-of-the-art methods.
- Abstract(参考訳): 我々はFr'echet型非対称距離をフィッシャー情報行列に基づいて定式化する。
対象タスクと与えられたベースラインタスクの集合における各タスク間の距離が、対象タスクのニューラルアーキテクチャ探索スペースを減らすためにどのように使用できるかを示す。
タスク固有のアーキテクチャに対する検索空間の複雑さの低減は、このサイド情報を用いることなく完全な検索を行う代わりに、類似したタスクのために最適化されたアーキテクチャ上に構築することで達成される。
実験の結果,提案手法の有効性と最新手法の改善が示された。
関連論文リスト
- Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graphはタスク固有の最適アーキテクチャを予測するトランスファー可能なNASメソッドである。
Arch-Graphの転送性と,多数のタスクにわたる高いサンプル効率を示す。
わずか50モデルの予算の下で、2つの検索スペースで平均して0.16%と0.29%のアーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2022-04-12T16:46:06Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
本研究では,異なるリソースを持つ多様なタスクを効率的に配置する上で,クラス群に対応するリソース制約や関心のタスクをテスト時に動的に指定する,新たな課題について検討する。
従来のNASアプローチでは、全てのクラスのアーキテクチャを同時に設計することを模索しており、これはいくつかの個別のタスクに最適ではないかもしれない。
本稿では、様々なリソース制約のある多様なタスクに対して、実行時に即時特殊化を可能にする、Elastic Architecture Search (EAS)と呼ばれる斬新で一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T00:54:27Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z) - A Multi-Task Deep Learning Framework for Building Footprint Segmentation [0.0]
足跡線構築タスクのための共同最適化方式を提案する。
また,画像再構成と建物足跡境界分割という2つの補助タスクも導入する。
特に、深層マルチタスク学習(MTL)ベースの統合完全畳み込みフレームワークを提案します。
論文 参考訳(メタデータ) (2021-04-19T15:07:27Z) - Neural Architecture Search From Task Similarity Measure [28.5184196829547]
フィッシャー情報の観点から定義された様々なタスク間の類似度測定に基づくニューラルネットワークアーキテクチャ検索フレームワークを提案する。
目標と既存のタスクの集合との関係を利用することで、アーキテクチャの探索空間を大幅に削減することができる。
論文 参考訳(メタデータ) (2021-02-27T15:26:14Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
汎用マルチタスク学習(GP-MTL)にニューラルアーキテクチャサーチ(NAS)を導入することを提案する。
異なるタスクの組み合わせに対応するため、GP-MTLネットワークを単一タスクのバックボーンに分割する。
また,探索されたアーキテクチャ間の性能ギャップを埋める単一ショット勾配に基づく探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-31T09:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。