MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for
Real-Time Semantic Segmentation
- URL: http://arxiv.org/abs/2103.13044v1
- Date: Wed, 24 Mar 2021 08:28:26 GMT
- Title: MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for
Real-Time Semantic Segmentation
- Authors: Guangwei Gao, Guoan Xu, Yi Yu, Jin Xie, Jian Yang, Dong Yue
- Abstract summary: We devise a novel lightweight network using a multi-scale context fusion scheme (MSCFNet)
The proposed MSCFNet contains only 1.15M parameters, achieves 71.9% Mean IoU and can run at over 50 FPS on a single Titan XP GPU configuration.
- Score: 27.232578592161673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, how to strike a good trade-off between accuracy and
inference speed has become the core issue for real-time semantic segmentation
applications, which plays a vital role in real-world scenarios such as
autonomous driving systems and drones. In this study, we devise a novel
lightweight network using a multi-scale context fusion (MSCFNet) scheme, which
explores an asymmetric encoder-decoder architecture to dispose this problem.
More specifically, the encoder adopts some developed efficient asymmetric
residual (EAR) modules, which are composed of factorization depth-wise
convolution and dilation convolution. Meanwhile, instead of complicated
computation, simple deconvolution is applied in the decoder to further reduce
the amount of parameters while still maintaining high segmentation accuracy.
Also, MSCFNet has branches with efficient attention modules from different
stages of the network to well capture multi-scale contextual information. Then
we combine them before the final classification to enhance the expression of
the features and improve the segmentation efficiency. Comprehensive experiments
on challenging datasets have demonstrated that the proposed MSCFNet, which
contains only 1.15M parameters, achieves 71.9\% Mean IoU on the Cityscapes
testing dataset and can run at over 50 FPS on a single Titan XP GPU
configuration.
Related papers
- CSFNet: A Cosine Similarity Fusion Network for Real-Time RGB-X Semantic Segmentation of Driving Scenes [0.0]
multimodal semantic segmentation methods suffer from high computational complexity and low inference speed.
We propose the Cosine Similarity Fusion Network (CSFNet) as a real-time RGB-X semantic segmentation model.
CSFNet has competitive accuracy with state-of-the-art methods while being state-of-the-art in terms of speed.
arXiv Detail & Related papers (2024-07-01T14:34:32Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - LENet: Lightweight And Efficient LiDAR Semantic Segmentation Using
Multi-Scale Convolution Attention [0.0]
We propose a projection-based semantic segmentation network called LENet with an encoder-decoder structure for LiDAR-based semantic segmentation.
The encoder is composed of a novel multi-scale convolutional attention (MSCA) module with varying receptive field sizes to capture features.
We show that our proposed method is lighter, more efficient, and robust compared to state-of-the-art semantic segmentation methods.
arXiv Detail & Related papers (2023-01-11T02:51:38Z) - Lightweight and Progressively-Scalable Networks for Semantic
Segmentation [100.63114424262234]
Multi-scale learning frameworks have been regarded as a capable class of models to boost semantic segmentation.
In this paper, we thoroughly analyze the design of convolutional blocks and the ways of interactions across multiple scales.
We devise Lightweight and Progressively-Scalable Networks (LPS-Net) that novelly expands the network complexity in a greedy manner.
arXiv Detail & Related papers (2022-07-27T16:00:28Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
We study inference acceleration using distributed convolutional neural networks (CNNs) in collaborative edge computing network.
We propose a novel collaborative edge computing using fused-layer parallelization to partition a CNN model into multiple blocks of convolutional layers.
arXiv Detail & Related papers (2022-07-22T18:38:11Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - EADNet: Efficient Asymmetric Dilated Network for Semantic Segmentation [8.449677920206817]
Experimental results on the Cityscapes dataset demonstrate that our proposed EADNet achieves segmentation mIoU of 67.1 with smallest number of parameters (only 0.35M) among mainstream lightweight semantic segmentation networks.
arXiv Detail & Related papers (2021-03-16T08:46:57Z) - EfficientFCN: Holistically-guided Decoding for Semantic Segmentation [49.27021844132522]
State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN)
We propose the EfficientFCN, whose backbone is a common ImageNet pre-trained network without any dilated convolution.
Such a framework achieves comparable or even better performance than state-of-the-art methods with only 1/3 of the computational cost.
arXiv Detail & Related papers (2020-08-24T14:48:23Z) - FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale
Context Aggregation and Feature Space Super-resolution [14.226301825772174]
We introduce a novel and efficient module called Cascaded Factorized Atrous Spatial Pyramid Pooling (CF-ASPP)
It is a lightweight cascaded structure for Convolutional Neural Networks (CNNs) to efficiently leverage context information.
We achieve 68.4% mIoU at 84 fps on the Cityscapes test set with a single Nivida Titan X (Maxwell) GPU card.
arXiv Detail & Related papers (2020-03-09T03:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.