High-gain quantum free-electron laser: long-time dynamics and
requirements
- URL: http://arxiv.org/abs/2103.13260v1
- Date: Wed, 24 Mar 2021 15:26:03 GMT
- Title: High-gain quantum free-electron laser: long-time dynamics and
requirements
- Authors: Peter Kling, Enno Giese, C. Moritz Carmesin, Roland Sauerbrey,
Wolfgang P. Schleich
- Abstract summary: We study the long-time dynamics of a high-gain free-electron laser in the quantum regime.
We find that the realization of a seeded Quantum FEL is more feasible than self-amplified spontaneous emission.
- Score: 0.1141780544549208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We solve the long-time dynamics of a high-gain free-electron laser in the
quantum regime. In this regime each electron emits at most one photon on
average, independently of the initial field. In contrast, the variance of the
photon statistics shows a qualitatively different behavior for different
initial states of the field. We find that the realization of a seeded Quantum
FEL is more feasible than self-amplified spontaneous emission.
Related papers
- SUPER excitation of quantum emitters is a multi-photon process [0.0]
swing-up of quantum emitter population scheme allows to populate the excited state of a quantum emitter with near-unity fidelity using two red-detuned laser pulses.
Our findings provide an unexpected physical interpretation of the SUPER scheme and unveil a new non-linear interaction between single emitters and multiple field modes.
arXiv Detail & Related papers (2024-06-25T13:28:02Z) - Quantum Optics with Recoiled Free Electrons [0.0]
We show how to generate photon and electron-photon Bell, Greenberger-Horne-Zeilinger (GHZ) and NOON states, coherent states, squeezed vacuum (including bright squeezed vacuum) and twin beams.
We predict a new class of photon and electron-photon quantum states shaped with the photon recoil effect (recoil-induced shaping)
These results have wide potential applications including quantum computing and communication with photons and free electrons, and open up a novel avenue for ultrafast electron microscopy and next-generation free-electron sources.
arXiv Detail & Related papers (2024-05-10T16:02:40Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Multi-photon electron emission with non-classical light [52.77024349608834]
We present measurements of electron number-distributions from metal needle tips illuminated with ultrashort light pulses of different photon quantum statistics.
Changing the number of modes of the exciting bright squeezed vacuum light, we can tailor the electron-number distribution on demand.
arXiv Detail & Related papers (2023-07-26T12:35:03Z) - Multiphoton processes and higher resonances in the quantum regime of the
free-electron laser [0.17767466724342063]
We show that relying on different resonances of the initial momentum of the electrons increases the number of emitted photons.
We investigate how multiphoton processes influence the dynamics in the deep quantum regime.
arXiv Detail & Related papers (2023-03-28T06:33:52Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - On quantum free-electron laser: Superradience [91.3755431537592]
An exact expression for the evolution of the laser amplitude is obtained.
Reliable conditions for the superradiance of the high-gained laser are discussed.
arXiv Detail & Related papers (2022-03-27T15:07:09Z) - Imprinting the quantum statistics of photons on free electrons [0.15274583259797847]
We observe quantum statistics effects of photons on free-electron-light interactions.
We demonstrate interactions passing continuously from Poissonian to super-Poissonian and up to thermal statistics.
Our findings suggest free-electron-based non-destructive quantum tomography of light, and constitute an important step towards combined atto-second and sub-A-spatial resolution microscopy.
arXiv Detail & Related papers (2021-05-07T08:16:21Z) - Ultrafast non-destructive measurement of the quantum state of light
using free electrons [0.0]
We propose using free electrons for quantum-optical detection of the complete quantum state of light.
We show how the precise control of the electron before and after its interaction with quantum light enables to extract the photon statistics.
Our work paves the way to novel kinds of photodetectors that utilize the ultrafast duration, high nonlinearity, and non-destructive nature of electron-light interactions.
arXiv Detail & Related papers (2020-12-22T14:59:31Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.