SUPER excitation of quantum emitters is a multi-photon process
- URL: http://arxiv.org/abs/2406.17540v2
- Date: Wed, 18 Sep 2024 11:09:59 GMT
- Title: SUPER excitation of quantum emitters is a multi-photon process
- Authors: Luca Vannucci, Niels Gregersen,
- Abstract summary: swing-up of quantum emitter population scheme allows to populate the excited state of a quantum emitter with near-unity fidelity using two red-detuned laser pulses.
Our findings provide an unexpected physical interpretation of the SUPER scheme and unveil a new non-linear interaction between single emitters and multiple field modes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The swing-up of quantum emitter population (SUPER) scheme allows to populate the excited state of a quantum emitter with near-unity fidelity using two red-detuned laser pulses. Its off-resonant, yet fully coherent nature has attracted significant interest in quantum photonics as a valuable tool for preparing single-photon sources in their excited state on demand, while simultaneously ensuring straightforward spectral filtering of the laser. However, the physical understanding of this mechanism in terms of energy exchange between the electromagnetic field and the emitter is still lacking. Here, we present a fully quantized model of the swing-up excitation and demonstrate that it is in fact a multi-photon process, where one of the modes loses two or more photons while the other gains at least one. Our findings provide an unexpected physical interpretation of the SUPER scheme and unveil a new non-linear interaction between single emitters and multiple field modes.
Related papers
- Unlocking multiphoton emission from a single-photon source through mean-field engineering [0.0]
In quantum mechanics, multiphoton emission can turn out to be even more fundamental and interesting than the single-photon emission.
We show how one can control the multiphoton dynamics of a two-level system by disrupting quantum interferences.
arXiv Detail & Related papers (2024-11-15T18:59:18Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Few-Photon SUPER: Quantum emitter inversion via two off-resonant photon modes [0.0]
We investigate an extended Jaynes-Cummings model where two photon modes are coupled off-resonantly to a quantum emitter.
We identify few-photon scattering mechanisms that lead to a full inversion of the emitter while transferring off-resonant photons from one mode to another.
Our results can be understood as quantized analogue of the recently developed off-resonant quantum control scheme known as Swing-UP of quantum EmitteR.
arXiv Detail & Related papers (2024-05-30T14:32:18Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled
by Chirped Pulses [0.0]
We demonstrate the robustness of ARP for simultaneous excitation of the biexciton states of multiple quantum dots.
Being able to generate spatially multiplexed entangled photon pairs is a big step towards the scalability of photonic devices.
arXiv Detail & Related papers (2022-09-19T12:44:28Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.