A Broad Study on the Transferability of Visual Representations with
Contrastive Learning
- URL: http://arxiv.org/abs/2103.13517v1
- Date: Wed, 24 Mar 2021 22:55:04 GMT
- Title: A Broad Study on the Transferability of Visual Representations with
Contrastive Learning
- Authors: Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid Karlinsky,
Richard Radke, Rogerio Feris
- Abstract summary: We study the transferability of learned representations of contrastive approaches for linear evaluation, full-network transfer, and few-shot recognition.
The results show that the contrastive approaches learn representations that are easily transferable to a different downstream task.
Our analysis reveals that the representations learned from the contrastive approaches contain more low/mid-level semantics than cross-entropy models.
- Score: 15.667240680328922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tremendous progress has been made in visual representation learning, notably
with the recent success of self-supervised contrastive learning methods.
Supervised contrastive learning has also been shown to outperform its
cross-entropy counterparts by leveraging labels for choosing where to contrast.
However, there has been little work to explore the transfer capability of
contrastive learning to a different domain. In this paper, we conduct a
comprehensive study on the transferability of learned representations of
different contrastive approaches for linear evaluation, full-network transfer,
and few-shot recognition on 12 downstream datasets from different domains, and
object detection tasks on MSCOCO and VOC0712. The results show that the
contrastive approaches learn representations that are easily transferable to a
different downstream task. We further observe that the joint objective of
self-supervised contrastive loss with cross-entropy/supervised-contrastive loss
leads to better transferability of these models over their supervised
counterparts. Our analysis reveals that the representations learned from the
contrastive approaches contain more low/mid-level semantics than cross-entropy
models, which enables them to quickly adapt to a new task. Our codes and models
will be publicly available to facilitate future research on transferability of
visual representations.
Related papers
- Constrained Multiview Representation for Self-supervised Contrastive
Learning [4.817827522417457]
We introduce a novel approach predicated on representation distance-based mutual information (MI) for measuring the significance of different views.
We harness multi-view representations extracted from the frequency domain, re-evaluating their significance based on mutual information.
arXiv Detail & Related papers (2024-02-05T19:09:33Z) - Visual Imitation Learning with Calibrated Contrastive Representation [44.63125396964309]
Adversarial Imitation Learning (AIL) allows the agent to reproduce expert behavior with low-dimensional states and actions.
This paper proposes a simple and effective solution by incorporating contrastive representative learning into visual AIL framework.
arXiv Detail & Related papers (2024-01-21T04:18:30Z) - Improving the Modality Representation with Multi-View Contrastive
Learning for Multimodal Sentiment Analysis [15.623293264871181]
This study investigates the improvement approaches of modality representation with contrastive learning.
We devise a three-stages framework with multi-view contrastive learning to refine representations for the specific objectives.
We conduct experiments on three open datasets, and results show the advance of our model.
arXiv Detail & Related papers (2022-10-28T01:25:16Z) - R\'enyiCL: Contrastive Representation Learning with Skew R\'enyi
Divergence [78.15455360335925]
We present a new robust contrastive learning scheme, coined R'enyiCL, which can effectively manage harder augmentations.
Our method is built upon the variational lower bound of R'enyi divergence.
We show that R'enyi contrastive learning objectives perform innate hard negative sampling and easy positive sampling simultaneously.
arXiv Detail & Related papers (2022-08-12T13:37:05Z) - Contrastive Instruction-Trajectory Learning for Vision-Language
Navigation [66.16980504844233]
A vision-language navigation (VLN) task requires an agent to reach a target with the guidance of natural language instruction.
Previous works fail to discriminate the similarities and discrepancies across instruction-trajectory pairs and ignore the temporal continuity of sub-instructions.
We propose a Contrastive Instruction-Trajectory Learning framework that explores invariance across similar data samples and variance across different ones to learn distinctive representations for robust navigation.
arXiv Detail & Related papers (2021-12-08T06:32:52Z) - Why Do Self-Supervised Models Transfer? Investigating the Impact of
Invariance on Downstream Tasks [79.13089902898848]
Self-supervised learning is a powerful paradigm for representation learning on unlabelled images.
We show that different tasks in computer vision require features to encode different (in)variances.
arXiv Detail & Related papers (2021-11-22T18:16:35Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
Recent breakthroughs in self-supervised learning show that such algorithms learn visual representations that can be transferred better to unseen tasks.
We propose a rehearsal-based continual learning algorithm that focuses on continually learning and maintaining transferable representations.
arXiv Detail & Related papers (2021-06-28T06:14:38Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - On Mutual Information in Contrastive Learning for Visual Representations [19.136685699971864]
unsupervised, "contrastive" learning algorithms in vision have been shown to learn representations that perform remarkably well on transfer tasks.
We show that this family of algorithms maximizes a lower bound on the mutual information between two or more "views" of an image.
We find that the choice of negative samples and views are critical to the success of these algorithms.
arXiv Detail & Related papers (2020-05-27T04:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.