Jointly Modeling Heterogeneous Student Behaviors and Interactions Among
Multiple Prediction Tasks
- URL: http://arxiv.org/abs/2103.13565v1
- Date: Thu, 25 Mar 2021 02:01:58 GMT
- Title: Jointly Modeling Heterogeneous Student Behaviors and Interactions Among
Multiple Prediction Tasks
- Authors: Haobing Liu, Yanmin Zhu, Tianzi Zang, Yanan Xu, Jiadi Yu, Feilong Tang
- Abstract summary: Prediction tasks about students have practical significance for both student and college.
In this paper, we focus on modeling heterogeneous behaviors and making multiple predictions together.
We design three motivating behavior prediction tasks based on a real-world dataset collected from a college.
- Score: 35.15654921278549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction tasks about students have practical significance for both student
and college. Making multiple predictions about students is an important part of
a smart campus. For instance, predicting whether a student will fail to
graduate can alert the student affairs office to take predictive measures to
help the student improve his/her academic performance. With the development of
information technology in colleges, we can collect digital footprints which
encode heterogeneous behaviors continuously. In this paper, we focus on
modeling heterogeneous behaviors and making multiple predictions together,
since some prediction tasks are related and learning the model for a specific
task may have the data sparsity problem. To this end, we propose a variant of
LSTM and a soft-attention mechanism. The proposed LSTM is able to learn the
student profile-aware representation from heterogeneous behavior sequences. The
proposed soft-attention mechanism can dynamically learn different importance
degrees of different days for every student. In this way, heterogeneous
behaviors can be well modeled. In order to model interactions among multiple
prediction tasks, we propose a co-attention mechanism based unit. With the help
of the stacked units, we can explicitly control the knowledge transfer among
multiple tasks. We design three motivating behavior prediction tasks based on a
real-world dataset collected from a college. Qualitative and quantitative
experiments on the three prediction tasks have demonstrated the effectiveness
of our model.
Related papers
- Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
We introduce a suite of models and evaluation methods we call AdapT.
AToM is a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimize for the correctness of future beliefs.
Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.
arXiv Detail & Related papers (2024-05-07T17:05:27Z) - Enhancing the Performance of Automated Grade Prediction in MOOC using
Graph Representation Learning [3.4882560718166626]
Massive Open Online Courses (MOOCs) have gained significant traction as a rapidly growing phenomenon in online learning.
Current automated assessment approaches overlook the structural links between different entities involved in the downstream tasks.
We construct a unique knowledge graph for a large MOOC dataset, which will be publicly available to the research community.
arXiv Detail & Related papers (2023-10-18T19:27:39Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Relaxed Clustered Hawkes Process for Procrastination Modeling in MOOCs [1.6822770693792826]
We propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters.
Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters.
arXiv Detail & Related papers (2021-01-29T22:20:38Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student.
ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges.
arXiv Detail & Related papers (2020-10-06T11:22:27Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Leveraging Affect Transfer Learning for Behavior Prediction in an
Intelligent Tutoring System [32.63911260416332]
We propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS)
By analyzing a student's face and gestures, our method predicts the outcome of a student answering a problem in an ITS from a video feed.
arXiv Detail & Related papers (2020-02-12T21:30:34Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.