Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction
- URL: http://arxiv.org/abs/2004.13930v1
- Date: Wed, 29 Apr 2020 02:32:04 GMT
- Title: Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction
- Authors: Zhiyong Yang, Qianqian Xu, Xiaochun Cao, Qingming Huang
- Abstract summary: We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
- Score: 166.87111665908333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an effective learning paradigm against insufficient training samples,
Multi-Task Learning (MTL) encourages knowledge sharing across multiple related
tasks so as to improve the overall performance. In MTL, a major challenge
springs from the phenomenon that sharing the knowledge with dissimilar and hard
tasks, known as negative transfer, often results in a worsened performance.
Though a substantial amount of studies have been carried out against the
negative transfer, most of the existing methods only model the transfer
relationship as task correlations, with the transfer across features and tasks
left unconsidered. Different from the existing methods, our goal is to
alleviate negative transfer collaboratively across features and tasks. To this
end, we propose a novel multi-task learning method called Task-Feature
Collaborative Learning (TFCL). Specifically, we first propose a base model with
a heterogeneous block-diagonal structure regularizer to leverage the
collaborative grouping of features and tasks and suppressing inter-group
knowledge sharing. We then propose an optimization method for the model.
Extensive theoretical analysis shows that our proposed method has the following
benefits: (a) it enjoys the global convergence property and (b) it provides a
block-diagonal structure recovery guarantee. As a practical extension, we
extend the base model by allowing overlapping features and differentiating the
hard tasks. We further apply it to the personalized attribute prediction
problem with fine-grained modeling of user behaviors. Finally, experimental
results on both simulated dataset and real-world datasets demonstrate the
effectiveness of our proposed method
Related papers
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
Advanced embedding models are typically developed using large-scale multi-task data and joint training across multiple tasks.
To overcome these challenges, we explore model merging-a technique that combines independently trained models to mitigate gradient conflicts and balance data distribution.
We introduce a novel method, Self Positioning, which efficiently searches for optimal model combinations within the space of task vectors using gradient descent.
arXiv Detail & Related papers (2024-10-19T08:39:21Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
arXiv Detail & Related papers (2023-07-07T03:54:26Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.