Tomography in the presence of stray inter-qubit coupling
- URL: http://arxiv.org/abs/2103.13611v1
- Date: Thu, 25 Mar 2021 05:24:07 GMT
- Title: Tomography in the presence of stray inter-qubit coupling
- Authors: Tanay Roy, Ziqian Li, Eliot Kapit, David I. Schuster
- Abstract summary: Tomography is an indispensable part of quantum computation as it enables diagnosis of a quantum process through state reconstruction.
In realistic systems, qubits often develop some form of unavoidable stray coupling making it difficult to manipulate one qubit independent of its partners.
We have developed a protocol, called coupling compensated tomography, that can correct for errors due to parasitic couplings completely in software.
- Score: 0.09831489366502298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tomography is an indispensable part of quantum computation as it enables
diagnosis of a quantum process through state reconstruction. Existing
tomographic protocols are based on determining expectation values of various
Pauli operators which typically require single-qubit rotations. However, in
realistic systems, qubits often develop some form of unavoidable stray coupling
making it difficult to manipulate one qubit independent of its partners.
Consequently, standard protocols applied to those systems result in unfaithful
reproduction of the true quantum state. We have developed a protocol, called
coupling compensated tomography, that can correct for errors due to parasitic
couplings completely in software and accurately determine the quantum state. We
demonstrate the performance of our scheme on a system of two transmon qubits
with always-on $\textit{ZZ}$ coupling. Our technique is a generic tomography
tool that can be applied to large systems with different types of stray
inter-qubit couplings and facilitates the use of arbitrary tomography pulses
and even non-orthogonal axes of rotation.
Related papers
- Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Benchmarking multi-qubit gates -- I: Metrological aspects [0.0]
benchmarking hardware errors in quantum computers has drawn significant attention lately.
Existing benchmarks for digital quantum computers involve averaging the global fidelity over a large set of quantum circuits.
We develop a new figure-of-merit suitable for multi-qubit quantum gates based on the reduced Choi matrix.
arXiv Detail & Related papers (2022-10-09T19:36:21Z) - Quantum state tomography with tensor train cross approximation [84.59270977313619]
We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings.
Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements.
arXiv Detail & Related papers (2022-07-13T17:56:28Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Compressive gate set tomography [1.3406858660972554]
Gate set tomography is a characterization approach that simultaneously and self-consistently extracts a tomographic description of the implementation of an entire set of quantum gates.
We show that low-rank approximations of gate sets can be obtained from significantly fewer gate sequences.
We also demonstrate how coherent errors in shadow estimation protocols can be mitigated using estimates from gate set tomography.
arXiv Detail & Related papers (2021-12-09T19:03:47Z) - Machine Learning for Continuous Quantum Error Correction on
Superconducting Qubits [1.8249709209063887]
Continuous quantum error correction has been found to have certain advantages over discrete quantum error correction.
We propose a machine learning algorithm for continuous quantum error correction based on the use of a recurrent neural network.
arXiv Detail & Related papers (2021-10-20T05:13:37Z) - Universal quantum computing with twist-free and temporally encoded
lattice surgery [3.222802562733787]
We introduce a decoder capable of correcting spacelike and timelike errors during lattice surgery protocols.
We compute logical failure rates of a lattice surgery protocol for a biased circuit-level noise model.
We propose a layout for a quantum processor that is more efficient for rectangular surface codes exploiting noise bias.
arXiv Detail & Related papers (2021-09-06T21:18:01Z) - Suppression of crosstalk in superconducting qubits using dynamical
decoupling [0.0]
Super superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors.
ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors.
We propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments on several IBM quantum cloud processors.
arXiv Detail & Related papers (2021-08-10T09:16:05Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.