Entanglement purification by counting and locating errors with
entangling measurements
- URL: http://arxiv.org/abs/2011.07084v2
- Date: Wed, 21 Jul 2021 14:53:35 GMT
- Title: Entanglement purification by counting and locating errors with
entangling measurements
- Authors: Ferran Riera S\`abat, Pavel Sekatski, Alexander Pirker and Wolfgang
D\"ur
- Abstract summary: We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider entanglement purification protocols for multiple copies of qubit
states. We use high-dimensional auxiliary entangled systems to learn about
number and positions of errors in the noisy ensemble in an explicit and
controlled way, thereby reducing the amount of noise in the ensemble and
purifying the remaining states. This allows us to design entanglement
purification protocols for any number of copies that work particularly well for
a small number of expected errors, i.e. high fidelity of initial states. The
main tool is a counter gate with which the required non-local information can
be transferred into the high-dimensional entangled qudit auxiliary states. We
compare our schemes to standard recurrence protocols that operate on pairs of
copies, and hashing and breeding protocols that operate on a (asymptotically)
large number of copies. Our protocols interpolate between these two regimes,
leading to a higher achievable fidelity and yield. We illustrate our approach
for bipartite qubit states, and generalize it to purify multi-party GHZ states.
Related papers
- Protocols and Trade-Offs of Quantum State Purification [4.732131350249]
We introduce a general state purification framework designed to achieve the highest fidelity with a specified probability.
For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco and al.
We prove the protocols' optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions.
arXiv Detail & Related papers (2024-04-01T14:34:45Z) - Performance of entanglement purification including maximally entangled mixed states [0.0]
Entanglement between distant quantum systems is a critical resource for implementing quantum communication.
We propose an entanglement purification protocol based on two entangling two-qubit operations.
Two variants of the core protocol are introduced and shown to be more practical in certain scenarios.
arXiv Detail & Related papers (2024-02-06T18:34:34Z) - Quantum Repeater for W states [0.0]
We introduce a quantum repeater protocol to efficiently distribute three-qubit W states over arbitrary distances.
We show that the protocol allows one to deal with errors resulting from imperfect channels or state preparation, and noisy operations.
arXiv Detail & Related papers (2023-04-13T18:01:22Z) - Entanglement Purification of Hypergraph States [0.0]
Entanglement purification describes a primitive in quantum information processing, where several copies of noisy quantum states are distilled into few copies of nearly-pure states of high quality.
We present optimized protocols for the purification of hypergraph states, which form a family of multi-qubit states that are relevant from several perspectives.
arXiv Detail & Related papers (2023-01-26T19:00:01Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.