論文の概要: Variational Autoencoder-Based Vehicle Trajectory Prediction with an
Interpretable Latent Space
- arxiv url: http://arxiv.org/abs/2103.13726v1
- Date: Thu, 25 Mar 2021 10:15:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:33:07.469143
- Title: Variational Autoencoder-Based Vehicle Trajectory Prediction with an
Interpretable Latent Space
- Title(参考訳): 可変遅延空間を用いた変分オートエンコーダに基づく車両軌道予測
- Authors: Marion Neumeier, Andreas Tollk\"uhn, Thomas Berberich and Michael
Botsch
- Abstract要約: 本稿では,車両軌道予測のための教師なし・エンドツーエンドの学習可能なニューラルネットワークであるdescriptive variational autoencoder (dvae)について述べる。
提案モデルは同様の予測精度を提供するが、解釈可能な潜在空間を持つことの利点がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the Descriptive Variational Autoencoder (DVAE), an
unsupervised and end-to-end trainable neural network for predicting vehicle
trajectories that provides partial interpretability. The novel approach is
based on the architecture and objective of common variational autoencoders. By
introducing expert knowledge within the decoder part of the autoencoder, the
encoder learns to extract latent parameters that provide a graspable meaning in
human terms. Such an interpretable latent space enables the validation by
expert defined rule sets. The evaluation of the DVAE is performed using the
publicly available highD dataset for highway traffic scenarios. In comparison
to a conventional variational autoencoder with equivalent complexity, the
proposed model provides a similar prediction accuracy but with the great
advantage of having an interpretable latent space. For crucial decision making
and assessing trustworthiness of a prediction this property is highly
desirable.
- Abstract(参考訳): 本稿では,車両軌道予測のための教師なし・エンドツーエンド学習可能なニューラルネットワークであるdescriptive variational autoencoder (dvae)について述べる。
この新しいアプローチは、共通の変分オートエンコーダのアーキテクチャと目的に基づいている。
オートエンコーダのデコーダ部に専門家の知識を導入することにより、エンコーダは人間の言葉で把握可能な意味を提供する潜在パラメータを抽出する。
このような解釈可能な潜在空間は、専門家定義規則セットによる検証を可能にする。
DVAEの評価は、ハイウェイ交通シナリオのための公開高Dデータセットを用いて行われる。
従来の変分オートエンコーダと同等の複雑性を比較すれば、提案モデルは同様の予測精度を提供するが、解釈可能な潜在空間を持つことの利点がある。
重要な意思決定と予測の信頼性を評価するためには、この性質が非常に望ましい。
関連論文リスト
- Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAEは、レコメンデーションモデルの内部状態を解釈するための、自動で一般化可能な探索手法である。
我々は、推薦モデルの内部アクティベーションを再構築するために、疎度制約付きオートエンコーダを訓練する。
我々は、潜在活性化と入力項目列の関係に基づき、概念辞書の構築を自動化した。
論文 参考訳(メタデータ) (2024-11-09T08:22:31Z) - Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
複雑な交通環境のナビゲーションはインテリジェントな技術の進歩によって大幅に向上し、自動車の正確な環境認識と軌道予測を可能にした。
既存の研究は、しばしばシナリオエージェントの合同推論を無視し、軌道予測モデルにおける解釈可能性に欠ける。
本研究では, 説明可能な拡散条件に基づく多モード軌道予測トラj-Explainerという, 説明可能性指向の軌道予測モデルが設計されている。
論文 参考訳(メタデータ) (2024-10-22T08:17:33Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - Interpretable Spectral Variational AutoEncoder (ISVAE) for time series
clustering [48.0650332513417]
可変オートエンコーダ(VAE)の出力にフィルタバンク(FB)の解釈可能なボトルネックを組み込んだ新しいモデルを導入する。
このアレンジメントは、入力信号の最も情報性の高いセグメントに参加するためにVAEを補完する。
VAEをこのFBに故意に拘束することにより、識別可能で分離可能で次元が縮小した符号化の開発を促進する。
論文 参考訳(メタデータ) (2023-10-18T13:06:05Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Think Twice before Driving: Towards Scalable Decoders for End-to-End
Autonomous Driving [74.28510044056706]
既存のメソッドは通常、分離されたエンコーダ-デコーダパラダイムを採用する。
本研究は,この問題を2つの原則で緩和することを目的としている。
まず、エンコーダの特徴に基づいて、粗い将来の位置と行動を予測する。
そして、その位置と動作を条件に、将来のシーンを想像して、それに従って運転した場合にその影響を確認する。
論文 参考訳(メタデータ) (2023-05-10T15:22:02Z) - Hierarchical Variational Autoencoder for Visual Counterfactuals [79.86967775454316]
条件変量オート(VAE)は、説明可能な人工知能(XAI)ツールとして注目されている。
本稿では, 後部の効果がいかに緩和され, 対物的効果が成功するかを示す。
本稿では,アプリケーション内の分類器を視覚的に監査できる階層型VAEについて紹介する。
論文 参考訳(メタデータ) (2021-02-01T14:07:11Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - On the Encoder-Decoder Incompatibility in Variational Text Modeling and
Beyond [82.18770740564642]
変分オートエンコーダ(VAE)は、潜時変数と償却変分推論を結合する。
我々は,データ多様体のパラメータ化が不十分なエンコーダ・デコーダの不整合性を観察する。
同一構造を持つ決定論的オートエンコーダとVAEモデルを結合した結合型VAEを提案する。
論文 参考訳(メタデータ) (2020-04-20T10:34:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。