論文の概要: Video Instance Segmentation with a Propose-Reduce Paradigm
- arxiv url: http://arxiv.org/abs/2103.13746v1
- Date: Thu, 25 Mar 2021 10:58:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:38:08.929582
- Title: Video Instance Segmentation with a Propose-Reduce Paradigm
- Title(参考訳): Propose-Reduce Paradigmを用いたビデオインスタンスセグメンテーション
- Authors: Huaijia Lin, Ruizheng Wu, Shu Liu, Jiangbo Lu, Jiaya Jia
- Abstract要約: ビデオインスタンスセグメンテーション(VIS)は、ビデオ内の各フレームごとに定義されたクラスのすべてのインスタンスをセグメンテーションし、関連付けることを目的とする。
先行メソッドは通常、フレームまたはクリップのセグメンテーションを最初に取得し、追跡またはマッチングによって不完全な結果をマージします。
新しいパラダイムであるPropose-Reduceを提案し、入力ビデオの完全なシーケンスを1ステップで生成します。
- 参考スコア(独自算出の注目度): 68.59137660342326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video instance segmentation (VIS) aims to segment and associate all instances
of predefined classes for each frame in videos. Prior methods usually obtain
segmentation for a frame or clip first, and then merge the incomplete results
by tracking or matching. These methods may cause error accumulation in the
merging step. Contrarily, we propose a new paradigm -- Propose-Reduce, to
generate complete sequences for input videos by a single step. We further build
a sequence propagation head on the existing image-level instance segmentation
network for long-term propagation. To ensure robustness and high recall of our
proposed framework, multiple sequences are proposed where redundant sequences
of the same instance are reduced. We achieve state-of-the-art performance on
two representative benchmark datasets -- we obtain 47.6% in terms of AP on
YouTube-VIS validation set and 70.4% for J&F on DAVIS-UVOS validation set.
- Abstract(参考訳): ビデオインスタンスセグメンテーション(VIS)は、ビデオ内の各フレームごとに定義されたクラスのすべてのインスタンスをセグメンテーションし、関連付けることを目的としている。
従来の方法は、まずフレームやクリップのセグメンテーションを取得し、その後追跡やマッチングによって不完全な結果をマージする。
これらのメソッドはマージステップでエラー蓄積を引き起こす可能性がある。
本稿では,入力ビデオの完全なシーケンスを生成するための新しいパラダイムであるPropose-Reduceを提案する。
さらに,画像レベルのインスタンス分割ネットワーク上に,長期的伝搬のためのシーケンス伝搬ヘッドを構築する。
提案するフレームワークの堅牢性と高いリコールを保証するため,同じインスタンスの冗長なシーケンスを減らした複数のシーケンスを提案する。
DAVIS-UVOS検証セットでは、YouTube-VIS検証セットではAPが47.6%、J&Fは70.4%である。
関連論文リスト
- DVIS++: Improved Decoupled Framework for Universal Video Segmentation [30.703276476607545]
我々は,最初のオープン語彙ユニバーサルビデオセグメンテーションフレームワークであるOV-DVIS++を提案する。
CLIPとDVIS++を統合することで、最初のオープン語彙のユニバーサルビデオセグメンテーションフレームワークであるOV-DVIS++を提案する。
論文 参考訳(メタデータ) (2023-12-20T03:01:33Z) - RefineVIS: Video Instance Segmentation with Temporal Attention
Refinement [23.720986152136785]
RefineVISは、既製のフレームレベルのイメージインスタンスセグメンテーションモデルの上に、2つの別々の表現を学習する。
TAR(Temporal Attention Refinement)モジュールは、時間的関係を利用して識別的セグメンテーション表現を学習する。
YouTube-VIS 2019 (64.4 AP)、Youtube-VIS 2021 (61.4 AP)、OVIS (46.1 AP)データセットで最先端のビデオインスタンスのセグメンテーション精度を達成する。
論文 参考訳(メタデータ) (2023-06-07T20:45:15Z) - InsPro: Propagating Instance Query and Proposal for Online Video
Instance Segmentation [41.85216306978024]
ビデオインスタンスセグメンテーション(VIS)は、ビデオ内のオブジェクトのセグメンテーションと追跡を目的としている。
以前のメソッドは、まずフレームレベルまたはクリップレベルのオブジェクトインスタンスを生成し、その後、追加のトラッキングヘッドまたは複雑なインスタンスマッチングアルゴリズムによってそれらを関連付ける。
本稿では,オンラインVISのためのシンプルな,高速かつ効果的なクエリベースのフレームワークを設計する。
論文 参考訳(メタデータ) (2023-01-05T02:41:20Z) - Tag-Based Attention Guided Bottom-Up Approach for Video Instance
Segmentation [83.13610762450703]
ビデオインスタンスは、ビデオシーケンス全体にわたるオブジェクトインスタンスのセグメンテーションと追跡を扱う、基本的なコンピュータビジョンタスクである。
そこで本研究では,従来の領域プロモーター方式ではなく,画素レベルの粒度でインスタンスマスク予測を実現するための,単純なエンドツーエンドのボトムアップ方式を提案する。
提案手法は,YouTube-VIS と DAVIS-19 のデータセット上での競合結果を提供する。
論文 参考訳(メタデータ) (2022-04-22T15:32:46Z) - STC: Spatio-Temporal Contrastive Learning for Video Instance
Segmentation [47.28515170195206]
ビデオインスタンス(VIS)は、ビデオ内の分類、セグメンテーション、インスタンスアソシエーションを同時に必要とするタスクである。
最近のVISアプローチは、RoI関連の操作や3D畳み込みなど、この目標を達成するために洗練されたパイプラインに依存している。
本稿では,インスタンスセグメンテーション手法であるConInstをベースとした,シンプルで効率的な単一ステージVISフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-08T09:34:26Z) - OCSampler: Compressing Videos to One Clip with Single-step Sampling [82.0417131211353]
本稿では,OCSampler というフレームワークを提案する。
我々の基本的な動機は、効率的なビデオ認識タスクは、フレームをシーケンシャルに拾うのではなく、シーケンス全体を一度に処理することにある。
論文 参考訳(メタデータ) (2022-01-12T09:50:38Z) - Improving Video Instance Segmentation via Temporal Pyramid Routing [61.10753640148878]
Video Instance(VIS)は、ビデオシーケンス内の各インスタンスを検出し、セグメンテーションし、追跡することを目的とした、新しい、本質的にはマルチタスク問題である。
隣接する2つのフレームからなる特徴ピラミッド対から画素レベルのアグリゲーションを条件付きで調整し,実行するための時間ピラミッドルーティング(TPR)戦略を提案する。
我々のアプローチはプラグイン・アンド・プレイモジュールであり、既存のインスタンス・セグメンテーション・メソッドにも容易に適用できます。
論文 参考訳(メタデータ) (2021-07-28T03:57:12Z) - End-to-End Video Instance Segmentation with Transformers [84.17794705045333]
ビデオインスタンスセグメンテーション(ビデオインスタンスセグメンテーション、英: Video instance segmentation、VIS)は、ビデオに関心のあるオブジェクトインスタンスを同時に分類、セグメンテーション、追跡することを必要とするタスクである。
本稿では,Transformer上に構築された新しいビデオインスタンスセグメンテーションフレームワークVisTRを提案する。
初めて、Transformers上に構築されたよりシンプルで高速なビデオインスタンスセグメンテーションフレームワークをデモし、競争力のある精度を実現した。
論文 参考訳(メタデータ) (2020-11-30T02:03:50Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
ビデオオブジェクト(VOS)に「トラッキング・バイ・検出」を導入する。
本稿では,時間的アグリゲーションネットワークと動的時間進化テンプレートマッチング機構を提案する。
我々は,DAVISベンチマークで1フレームあたり0.14秒,J&Fで75.9%の速度で,複雑なベルとホイッスルを伴わずに,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-11T05:44:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。