Transform consistency for learning with noisy labels
- URL: http://arxiv.org/abs/2103.13872v1
- Date: Thu, 25 Mar 2021 14:33:13 GMT
- Title: Transform consistency for learning with noisy labels
- Authors: Rumeng Yi, Yaping Huang
- Abstract summary: We propose a method to identify clean samples only using one single network.
Clean samples prefer to reach consistent predictions for the original images and the transformed images.
In order to mitigate the negative influence of noisy labels, we design a classification loss by using the off-line hard labels and on-line soft labels.
- Score: 9.029861710944704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is crucial to distinguish mislabeled samples for dealing with noisy
labels. Previous methods such as Coteaching and JoCoR introduce two different
networks to select clean samples out of the noisy ones and only use these clean
ones to train the deep models. Different from these methods which require to
train two networks simultaneously, we propose a simple and effective method to
identify clean samples only using one single network. We discover that the
clean samples prefer to reach consistent predictions for the original images
and the transformed images while noisy samples usually suffer from inconsistent
predictions. Motivated by this observation, we introduce to constrain the
transform consistency between the original images and the transformed images
for network training, and then select small-loss samples to update the
parameters of the network. Furthermore, in order to mitigate the negative
influence of noisy labels, we design a classification loss by using the
off-line hard labels and on-line soft labels to provide more reliable
supervisions for training a robust model. We conduct comprehensive experiments
on CIFAR-10, CIFAR-100 and Clothing1M datasets. Compared with the baselines, we
achieve the state-of-the-art performance. Especially, in most cases, our
proposed method outperforms the baselines by a large margin.
Related papers
- Mitigating Noisy Supervision Using Synthetic Samples with Soft Labels [13.314778587751588]
Noisy labels are ubiquitous in real-world datasets, especially in the large-scale ones derived from crowdsourcing and web searching.
It is challenging to train deep neural networks with noisy datasets since the networks are prone to overfitting the noisy labels during training.
We propose a framework that trains the model with new synthetic samples to mitigate the impact of noisy labels.
arXiv Detail & Related papers (2024-06-22T04:49:39Z) - Robust Noisy Label Learning via Two-Stream Sample Distillation [48.73316242851264]
Noisy label learning aims to learn robust networks under the supervision of noisy labels.
We design a simple yet effective sample selection framework, termed Two-Stream Sample Distillation (TSSD)
This framework can extract more high-quality samples with clean labels to improve the robustness of network training.
arXiv Detail & Related papers (2024-04-16T12:18:08Z) - Pairwise Similarity Distribution Clustering for Noisy Label Learning [0.0]
Noisy label learning aims to train deep neural networks using a large amount of samples with noisy labels.
We propose a simple yet effective sample selection algorithm to divide the training samples into one clean set and another noisy set.
Experimental results on various benchmark datasets, such as CIFAR-10, CIFAR-100 and Clothing1M, demonstrate significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2024-04-02T11:30:22Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Sample selection for efficient image annotation [14.695979686066066]
Supervised object detection has been proven to be successful in many benchmark datasets achieving human-level performances.
We propose an efficient image selection approach that samples the most informative images from the unlabeled dataset.
Our method can reduce up to 80% of manual annotation workload, compared to full manual labeling setting, and performs better than random sampling.
arXiv Detail & Related papers (2021-05-10T21:25:10Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - Bridging In- and Out-of-distribution Samples for Their Better
Discriminability [18.84265231678354]
We consider samples lying in the intermediate of the two and use them for training a network.
We generate such samples using multiple image transformations that corrupt inputs in various ways and with different severity levels.
We estimate where the generated samples by a single image transformation lie between ID and OOD using a network trained on clean ID samples.
arXiv Detail & Related papers (2021-01-07T11:34:18Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
We propose a reusable sample selection and correction approach, termed as CRSSC, for coping with label noise in training deep FG models with web images.
Our key idea is to additionally identify and correct reusable samples, and then leverage them together with clean examples to update the networks.
arXiv Detail & Related papers (2020-08-06T02:07:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.