論文の概要: Adversarial Imitation Learning with Trajectorial Augmentation and
Correction
- arxiv url: http://arxiv.org/abs/2103.13887v1
- Date: Thu, 25 Mar 2021 14:49:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 17:25:33.894014
- Title: Adversarial Imitation Learning with Trajectorial Augmentation and
Correction
- Title(参考訳): 軌道拡大と補正による対向的模倣学習
- Authors: Dafni Antotsiou, Carlo Ciliberto and Tae-Kyun Kim
- Abstract要約: 本稿では,拡張軌道の成功を保った新しい拡張手法を提案する。
我々は, 合成専門家を用いた模倣エージェントの訓練を行うために, 逆データ拡張模倣アーキテクチャを開発した。
実験により,我々のデータ拡張戦略は,敵対的模倣の精度と収束時間を向上できることが示された。
- 参考スコア(独自算出の注目度): 61.924411952657756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Imitation Learning requires a large number of expert demonstrations,
which are not always easy to obtain, especially for complex tasks. A way to
overcome this shortage of labels is through data augmentation. However, this
cannot be easily applied to control tasks due to the sequential nature of the
problem. In this work, we introduce a novel augmentation method which preserves
the success of the augmented trajectories. To achieve this, we introduce a
semi-supervised correction network that aims to correct distorted expert
actions. To adequately test the abilities of the correction network, we develop
an adversarial data augmented imitation architecture to train an imitation
agent using synthetic experts. Additionally, we introduce a metric to measure
diversity in trajectory datasets. Experiments show that our data augmentation
strategy can improve accuracy and convergence time of adversarial imitation
while preserving the diversity between the generated and real trajectories.
- Abstract(参考訳): 深い模倣学習は、多くの専門家によるデモンストレーションを必要とするが、特に複雑なタスクでは、必ずしも取得が容易ではない。
このラベル不足を克服する方法は、データ拡張である。
しかし,問題の本質が逐次的であるため,制御タスクには容易に適用できない。
本研究では,拡張軌道の成功を保った新しい拡張手法を提案する。
そこで本研究では,歪んだ専門家行動の修正を目的とした半教師付き補正ネットワークを提案する。
補正ネットワークの能力を適切にテストするために, 合成専門家を用いて模倣エージェントを訓練するための逆データ拡張模倣アーキテクチャを開発した。
さらに,トラジェクトリデータセットの多様性を測定する指標も導入する。
実験の結果,データ拡張戦略は,生成した軌跡と実際の軌跡の多様性を保ちながら,逆模倣の精度と収束時間を向上できることがわかった。
関連論文リスト
- Towards Stable and Storage-efficient Dataset Distillation: Matching Convexified Trajectory [53.37473225728298]
ディープラーニングと大規模言語モデルの急速な進化により、トレーニングデータの需要が指数関数的に増加した。
MTT(Matching Training Trajectories)は、専門家ネットワークのトレーニングトラジェクトリを、合成データセットで実データ上に複製する、顕著なアプローチである。
そこで本研究では,学生の軌道に対するより良いガイダンスを提供することを目的として,MCT (Matching Convexified Trajectory) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-28T11:06:46Z) - Boosting Model Resilience via Implicit Adversarial Data Augmentation [20.768174896574916]
本稿では, 対向性および対向性摂動分布を組み込むことにより, 試料の深い特性を増大させることを提案する。
そして、この拡張過程が代理損失関数の最適化に近似することを理論的に明らかにする。
我々は4つの共通のバイアス付き学習シナリオにまたがって広範な実験を行う。
論文 参考訳(メタデータ) (2024-04-25T03:22:48Z) - Meta-Learning with Versatile Loss Geometries for Fast Adaptation Using
Mirror Descent [44.56938629818211]
メタ学習における根本的な課題は、タスク固有のモデルをトレーニングするために、抽出したモデルを迅速に“適応”する方法である。
既存のアプローチは、タスク毎のトレーニングプロセスの収束性を高めるプリコンディショナーを使用して、この課題に対処する。
この寄与は非線形ミラーマップを学習することでこの制限に対処し、多角距離メートル法を誘導する。
論文 参考訳(メタデータ) (2023-12-20T23:45:06Z) - Stochastic Vision Transformers with Wasserstein Distance-Aware Attention [8.407731308079025]
自己教師付き学習は、限られたラベル付きデータから知識を得るための最も有望なアプローチの1つである。
我々は、不確実性と距離認識を自己教師付き学習パイプラインに統合する新しいビジョントランスフォーマーを導入する。
提案手法は,多種多様なデータセットを対象とした多種多様な実験において,自己教師付きベースラインを超える精度とキャリブレーションを実現する。
論文 参考訳(メタデータ) (2023-11-30T15:53:37Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
信頼性オーグメンテーション(CONVERT)を用いたContrastiVe Graph ClustEringネットワークを提案する。
本手法では,データ拡張を可逆的パーターブ・リカバリネットワークにより処理する。
セマンティクスの信頼性をさらに保証するために、ネットワークを制約する新たなセマンティクス損失が提示される。
論文 参考訳(メタデータ) (2023-08-17T13:07:09Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
教官が特権情報にアクセスして意思決定を行う場合、この情報は模倣学習中に疎外されることを示す。
本稿では,このギャップに対処するため,適応的不規則化(ADVISOR)を提案する。
ADVISORは、トレーニング中の模倣と報酬に基づく強化学習損失を動的に重み付け、模倣と探索をオンザフライで切り替えることを可能にする。
論文 参考訳(メタデータ) (2020-07-23T17:59:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。