論文の概要: Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation
- arxiv url: http://arxiv.org/abs/2103.13944v1
- Date: Thu, 25 Mar 2021 16:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 16:34:33.253818
- Title: Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation
- Title(参考訳): 保存、促進、または攻撃?
位相摂動によるGNN説明
- Authors: Yi Sun, Abel Valente, Sijia Liu, Dakuo Wang
- Abstract要約: 入力グラフのトポロジー摂動を表すマスクを取得し,多目的解釈フレームワークを開発した。
フレームワークをインタラクティブな視覚化システム(GNNViz)にパックし、Preserve、Promote、Attack GNNの予測といった複数の目的を達成できます。
- 参考スコア(独自算出の注目度): 24.665468294430216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior works on formalizing explanations of a graph neural network (GNN) focus
on a single use case - to preserve the prediction results through identifying
important edges and nodes. In this paper, we develop a multi-purpose
interpretation framework by acquiring a mask that indicates topology
perturbations of the input graphs. We pack the framework into an interactive
visualization system (GNNViz) which can fulfill multiple purposes:
Preserve,Promote, or Attack GNN's predictions. We illustrate our approach's
novelty and effectiveness with three case studies: First, GNNViz can assist non
expert users to easily explore the relationship between graph topology and
GNN's decision (Preserve), or to manipulate the prediction (Promote or Attack)
for an image classification task on MS-COCO; Second, on the Pokec social
network dataset, our framework can uncover unfairness and demographic biases;
Lastly, it compares with state-of-the-art GNN explainer baseline on a synthetic
dataset.
- Abstract(参考訳): グラフニューラルネットワーク(gnn)の説明を形式化する作業は、重要なエッジとノードを特定することによって予測結果を保存するために、1つのユースケースに焦点を当てている。
本稿では,入力グラフのトポロジ摂動を示すマスクを取得することで,多目的解釈フレームワークを開発する。
フレームワークを対話型可視化システム(GNNViz)に詰め込み、保存、プロモテ、アタックGNNの予測といった複数の目的を達成する。
We illustrate our approach's novelty and effectiveness with three case studies: First, GNNViz can assist non expert users to easily explore the relationship between graph topology and GNN's decision (Preserve), or to manipulate the prediction (Promote or Attack) for an image classification task on MS-COCO; Second, on the Pokec social network dataset, our framework can uncover unfairness and demographic biases; Lastly, it compares with state-of-the-art GNN explainer baseline on a synthetic dataset.
関連論文リスト
- Rethinking Propagation for Unsupervised Graph Domain Adaptation [17.443218657417454]
Unlabelled Graph Domain Adaptation (UGDA)は、ラベル付きソースグラフから教師なしターゲットグラフに知識を転送することを目的としている。
本稿では,グラフ領域適応のためのA2GNNというシンプルな手法を提案する。
論文 参考訳(メタデータ) (2024-02-08T13:24:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - Visualizing Graph Neural Networks with CorGIE: Corresponding a Graph to
Its Embedding [16.80197065484465]
本稿では,入力グラフをノード埋め込み(潜時空間)に対応付ける手法を提案する。
我々はCorGIEと呼ばれるインタラクティブなマルチビューインタフェースを開発し、抽象化をインスタンス化する。
我々はCorGIEを2つの利用シナリオで利用し、GNNの専門家2人とケーススタディを行う。
論文 参考訳(メタデータ) (2021-06-24T08:59:53Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Higher-Order Explanations of Graph Neural Networks via Relevant Walks [3.1510406584101776]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを予測するための一般的なアプローチである。
本稿では,GNNを高次展開を用いて自然に説明できることを示す。
本稿では,テキストデータの感情分析,量子化学における構造・不適切な関係,画像分類に関する実践的な知見を抽出する。
論文 参考訳(メタデータ) (2020-06-05T17:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。