論文の概要: Stock price forecast with deep learning
- arxiv url: http://arxiv.org/abs/2103.14081v1
- Date: Sun, 21 Mar 2021 12:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 01:07:47.364865
- Title: Stock price forecast with deep learning
- Title(参考訳): ディープラーニングによる株価予測
- Authors: Firuz Kamalov, Linda Smail, Ikhlaas Gurrib
- Abstract要約: 我々は,S&P500指数の翌日の値を予測するために,完全連結型,畳み込み型,反復型アーキテクチャの性能解析を行った。
実験により、RMSprop を用いた単層リカレントニューラルネットワークは、それぞれ 0.0150 と 0.0148 の絶対誤差の検証とテストで最適な結果が得られることが明らかになった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we compare various approaches to stock price prediction using
neural networks. We analyze the performance fully connected, convolutional, and
recurrent architectures in predicting the next day value of S&P 500 index based
on its previous values. We further expand our analysis by including three
different optimization techniques: Stochastic Gradient Descent, Root Mean
Square Propagation, and Adaptive Moment Estimation. The numerical experiments
reveal that a single layer recurrent neural network with RMSprop optimizer
produces optimal results with validation and test Mean Absolute Error of 0.0150
and 0.0148 respectively.
- Abstract(参考訳): 本稿では,ニューラルネットワークを用いた株価予測への様々なアプローチを比較する。
我々は,S&P500指数の翌日の値を予測するために,完全連結型,畳み込み型,反復型アーキテクチャの性能解析を行った。
さらに, 確率勾配降下, 根平均二乗伝播, 適応モーメント推定という3つの最適化手法を含め, 解析をさらに拡張する。
数値実験により、rmspropオプティマイザを用いた単層リカレントニューラルネットワークは、それぞれ0.0150と0.00148の検証とテスト平均絶対誤差で最適結果を生成することが分かった。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Variational Linearized Laplace Approximation for Bayesian Deep Learning [11.22428369342346]
変分スパースガウス過程(GP)を用いた線形ラプラス近似(LLA)の近似法を提案する。
本手法はGPの2つのRKHSの定式化に基づいており、予測平均として元のDNNの出力を保持する。
効率のよい最適化が可能で、結果としてトレーニングデータセットのサイズのサブ線形トレーニング時間が短縮される。
論文 参考訳(メタデータ) (2023-02-24T10:32:30Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - How Powerful are Performance Predictors in Neural Architecture Search? [43.86743225322636]
我々は31の手法を解析し,性能予測器の大規模研究を行った。
予測器の特定のファミリーが組み合わさることで、より優れた予測能力が得られることを示す。
論文 参考訳(メタデータ) (2021-04-02T17:57:16Z) - Forecasting with Deep Learning: S&P 500 index [0.0]
本稿では、S&P 500インデックスの将来価値を予測する畳み込みに基づくニューラルネットワークモデルを提案する。
実験の結果,本モデルが精度55%以上のベンチマークを上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-21T11:51:49Z) - Beyond Point Estimate: Inferring Ensemble Prediction Variation from
Neuron Activation Strength in Recommender Systems [21.392694985689083]
Ensemble Methodは、予測不確実性推定のための最先端のベンチマークである。
予測のバリエーションは、様々なランダム性源から生じることを観察する。
本稿では,ニューロンの活性化強度の予測変動を推定し,活性化強度の特徴から強い予測力を示す。
論文 参考訳(メタデータ) (2020-08-17T00:08:27Z) - Conformal Prediction Intervals for Neural Networks Using Cross
Validation [0.0]
ニューラルネットワークは、教師付き学習問題に対処するために使用される最も強力な非線形モデルの一つである。
ニューラルネットワークの予測区間を$k$-foldのクロスバリデーションに基づいて構築するための$k$-fold予測区間法を提案する。
論文 参考訳(メタデータ) (2020-06-30T16:23:28Z) - ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning [91.13797346047984]
本稿では,2次最適化アルゴリズムであるADAHESSIANを紹介する。
ADAHESSIANは、他の適応最適化手法と比較して、新しい最先端の成果を大きなマージンで達成することを示す。
論文 参考訳(メタデータ) (2020-06-01T05:00:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。