Control of spectroscopic features of multiphoton transitions in two
coupled qubits by driving fields
- URL: http://arxiv.org/abs/2103.14285v1
- Date: Fri, 26 Mar 2021 06:18:38 GMT
- Title: Control of spectroscopic features of multiphoton transitions in two
coupled qubits by driving fields
- Authors: V. O. Munyaev and M. V. Bastrakova
- Abstract summary: We study the quantum levels population behavior of the two coupled flux qubits depending on the external driving field characteristics.
We describe the controllable features of their formation and thereby creating or destroying entanglement.
We numerically demonstrate, that the positions of multiphoton resonances are stable to dissipative processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The quantum levels population behavior of the two coupled flux qubits
depending on the external driving field characteristics is studied. The
explicit expressions for the multiphoton transition probabilities at an
arbitrary control field amplitude is obtained for the case of small tunnel
splitting energies. We describe the controllable features of their formation
and thereby creating or destroying entanglement by system bias tuning on the
direct inter-level transition and during the transition through intermediate
states. We found a feature of the qubits population inverting that ends in the
independence of the resonances positions from the qubits coupling strength.
Using Floquet--Markov equation we numerically demonstrate, that the positions
of multiphoton resonances are stable to dissipative processes.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Experimental Realization and Characterization of Stabilized Pair
Coherent States [4.486044407450978]
PCS is an interesting class of non-Gaussian continuous-variable entangled state.
PCS is at the heart of a promising quantum error correction code: the pair cat code.
We report an experimental demonstration of the pair coherent state of microwave photons in two superconducting cavities.
arXiv Detail & Related papers (2022-09-23T15:24:25Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Photon-assisted Landau-Zener transitions in a periodically driven Rabi
dimer coupled to a dissipative mode [9.960057330841405]
We investigate multiple photon-assisted Landau-Zener transitions in a hybrid circuit quantum electrodynamics device.
The quantum state of the entire composite system is modeled using the multi-$rm D$ Ansatz principle.
We can precisely manipulate the qubit state and successfully generate the qubit dynamics with a square-wave pattern.
arXiv Detail & Related papers (2021-01-08T10:41:58Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.